Life Cycle Assessment of Indoor Recirculating Shrimp Aquaculture System

Wenting Sun
Life Cycle Assessment of Indoor Recirculating Shrimp Aquaculture System

By:

Wenting Sun

A project submitted in partial fulfillment of requirements for the degree of Master of Science (Natural Resources and Environment)

University of Michigan
Ann Arbor
August 14, 2009

Faculty Advisors:
Professor Gregory Keoleian
Associate Professor James Diana

A report of the Center for Sustainable Systems
Report No. CSS09-15
LIFE CYCLE ASSESSMENT OF INDOOR RECIRCULATING SHRIMP AQUACULTURE SYSTEM
Wenting Sun
Center for Sustainable Systems, Report No. CSS09-15
University of Michigan, Ann Arbor, Michigan
August 14, 2009
34 pp., 4 tables, 22 figures, 7 appendices

This document is available online at: http://css.snre.umich.edu
Table of Contents

1 Introduction .. 1
 1.1 Overview ... 1
 1.1.1 Seafood production and sustainability ... 1
 1.1.2 Case of shrimp .. 1
 1.1.3 RAS as more sustainable shrimp culture ... 2
 1.1.4 LCA methods to evaluate sustainability ... 3
 1.2 Purpose of study .. 5

2 Goal Definition and Scoping .. 6
 2.1 Hatchery .. 8
 2.2 Recirculating Aquaculture Farm ... 8
 2.3 Feed ... 10
 2.4 Processing and Storage ... 12
 2.5 Transportation ... 12

3 Life Cycle Inventory Analysis .. 12
 3.1 Material Consumption at Each Stage .. 12
 3.1.1 Hatchery .. 12
 3.1.2 Farming ... 13
 3.1.3 Processing and Storage ... 15
 3.1.4 Transportation .. 15
 3.2 Life Cycle Energy Use ... 16

4 Life Cycle Impact Assessment Results ... 18

5 Scenario Analysis ... 21
 5.1 Transportation Scenario Analysis .. 21
 5.2 Marketing Scale Scenario Analysis ... 24
 5.3 Farm Location Scenario Analysis .. 25
 5.4 Biosolids Treatment Scenario Analysis .. 27

6 Comparison with Conventional Shrimp Aquaculture ... 28
 6.1 Shrimp Culture System Comparison ... 28
 6.2 Total Life Cycle Comparison .. 29

7 Conclusion ... 31

8 Literature cited .. 33

9 Appendix .. 35
List of Figures

Figure 1 Schematic of a recirculating aquaculture system consisting of shrimp culture system and water treatment system ... 2
Figure 2 Life Cycle Assessment Framework ... 3
Figure 3 A life cycle schematic of the recirculating shrimp aquaculture system ... 6
Figure 4 Detailed life cycle of recirculating shrimp aquaculture system ... 7
Figure 5 Layout of Oceanic Institute Farm Building ... 9
Figure 6 A schematic of four principal zones of a rectangular continuous flow sedimentation basin ... 9
Figure 7 Contributions to energy use associated with the life cycle production and distribution of 1800 kg fresh shrimp produced in the US (alternative 1 scenario) ... 9
Figure 8 Contributions to energy use associated with farming of 1800 kg fresh shrimp produced in the US (alternative 1 scenario) ... 17
Figure 9 Electricity consumption for shrimp farming ... 18
Figure 10 Energy consumption for feed raw material production ... 18
Figure 11 Contributions to impacts associated with the life cycle production and distribution of 1800 kg fresh shrimp produced in the US (local scale scenario) ... 19
Figure 12 Contributions of major inputs or outputs to impacts associated with shrimp farming in the US ... 20
Figure 13 Contributions of each feed component to impacts associated with shrimp feed production in the US ... 20
Figure 14 Normalised LCA results for 1800 kg of fresh shrimp production and distribution in the US (alternative 1 scenario) ... 21
Figure 15 Normalised LCA results for 1800 kg of fresh shrimp production and distribution in the US (alternative 1 scenario) for (a) Transportation 1, (b) Transportation 2, (c) Transportation 3, (d) Transportation 4 and (e) Transportation 6 scenario analysis ... 24
Figure 16 Normalised LCA results for 1800 kg of fresh shrimp production and distribution in the US for marketing scale scenario analysis ... 25
Figure 17 Normalised LCA results for 1800 kg of fresh shrimp production and distribution in the US for farm location scenario analysis ... 26
Figure 18 Normalised LCA results for 1800 kg of shrimp production in 1) Michigan and 2) Texas and shrimp distribution to Michigan ... 27
Figure 19 Normalised LCA results for 1800 kg of fresh shrimp produced in the US (alternative 1 scenario) for biosolids treatment methods scenario analysis ... 28
Figure 20 Normalized LCA results for 1.8 kg of shrimp produced in conventional flow-through culture system and RAS ... 29
Figure 21 Normalized LCA results for 1.8 kg of fresh shrimp produced in conventional farm and RAS farm in the US ... 30
Figure 22 Normalized LCA results for frozen shrimp produced in Thailand, fresh shrimp ... 31
List of Tables

Table 1 Input and output for producing 1 metric ton shrimp feed 11
Table 2 Proximate analysis of shrimp feed .. 11
Table 3 Inputs, outputs and electricity consumption for production of 1000 PLs in the hatchery .. 13
Table 4 Inputs, outputs and energy consumption for one modeled greenhouse for one year .. 14
Abstract

This study analyzed the sustainability and environmental impact of indoor recirculating aquaculture systems (RAS) used for raising shrimp in the U.S. A life cycle analysis (LCA) was performed to evaluate the environmental and energy performance of the system. In the LCA study, the functional unit was 1800 kg fresh shrimp, produced by a commercial-scale recirculating shrimp aquaculture system in the U.S. The life cycle model included the hatchery, recirculating farm, product processing & storage, and transportation stages. The impact assessment method used was Eco-Indicator 95 and the environmental impact categories included global warming potential (GWP), ozone depletion potential (ODP), acidification potential (AP), eutrophication potential (EP), heavy metals (HM), carcinogens, pesticides (PC), summer smog (SS), winter smog (WS) and solid waste (SW). According to the LCA results, shrimp farming accounted for 95% of the life cycle energy use and caused 82-99.6% of the environmental impacts in the life cycle system.

A scenario analysis examining transportation, marketing, farm location, and biosolids handling was also conducted. Results were sensitive to farm location and marketing scale while transportation and biosolids handling were much less significant. Reducing the scale of the market reduced environmental impacts due to energy savings in product distribution and storage. Impacts of the local-scale scenario were just 42-87% of those of the national-scale scenario. Farm location was also significant since the energy use and environmental impacts in mainland coastal farms were 30% and 9-37% of those in the inland farms, respectively. With the same culture technique and product distribution, coastal farms were preferable to inland farms in terms of energy savings and pollution reduction. Moreover, compared to culturing shrimp locally in Michigan, buying shrimp from the Southern coast reduced life cycle energy by 70% and reduced pollutant emissions by 86-643% for Michigan consumers. In addition, for American consumers, producing shrimp in this country was recommended, over importing shrimp from Asia. Shrimp production and distribution in the US led to a 15-82% reduction in pollutant emissions.

In comparing culture technique, there was a trade-off amongst energy consumption, water use, and environmental impacts with RAS and conventional flow-through farms. The RAS used 70% less water than the conventional system, while the electricity usage in RAS was 1.4 times that of the conventional flow-through system. The RAS produced lower GWP, EP, and ODP impacts while the conventional farm showed better performance in terms of AP impacts.
Acknowledgements

This research was made possible through funding from the University of Michigan Graham Environmental Sustainability Institute, and by support from the School of Natural Resources and Environment (SNRE) and Center for Sustainable Systems (CSS) at the University. Numerous people at SNRE and CSS, as well as representatives from the Oceanic Institute and Waddell Mariculture Center, provided valuable guidance throughout this research. I would not have been able to complete this project without their insights, and I thank everyone who contributed to this project. Their breadth of feedback, insight, and support was essential in bringing the project to its current state.

Dr. Greg Keoleian, Co-Director of CSS, and Dr. James Diana, Professor of Natural Resources and Environment, provided significant expertise and continuous support in the development and implementation of this research. Prof. Keoleian has also acted as a mentor during my time at the University. I greatly appreciate having the opportunity to work with them throughout this experience of education and research.

Shaun Moss and Clete Otoshi at Oceanic Institute and Craig Browdy and Al Stokes at Waddell Mariculture provided information and data about their shrimp farming systems. Ling Cao, PhD candidate at SNRE, conducted data collection in several hatcheries in China and provided information about post larvae rearing for this research. Without their help in data collection, this research could not have been completed.
1 Introduction

1.1 Overview

1.1.1 Seafood production and sustainability

Capture fisheries and aquaculture supplied the world with about 106 million metric tons of food fish in 2004, providing an apparent per capita supply of 16.6 kg (live weight equivalent), which is the highest quantity on record (FAO, 2007). Of this total, aquaculture accounted for 43 percent. Aquaculture production has increased at an average annual growth rate for the world of 8.8 percent per year since 1970. Aquaculture production in 2004 was reported to be 45.5 million metric tons, with a value of US$63.3 billion (FAO, 2007). Rising global demand for seafood and declining catches have created a new impetus to expand seafood production through aquaculture.

1.1.2 Case of shrimp

Total world trade in fish and fishery products reached a record value of US$71.5 billion (export value) in 2004, representing 23 percent growth relative to 2000 (FAO, 2007). Shrimp was the most important commodity traded, in value terms, accounting for 16.5 percent of the total value of internationally traded fishery products in 2004 (FAO, 2007). The substantial increase in the quantity of shrimp traded coincided with strong expansion in aquaculture shrimp production, which has grown rapidly since 1997, with an increase of 165 percent from 1997 to 2004 (annual growth of 15 percent). In 2004, more than 41 percent (or 2.5 million metric tons) of total shrimp production was of farmed origin (FAO, 2007).

Shrimp aquaculture can help to reduce pressure on overexploited wild stocks, in terms of natural resources protection. However, due to poor planning and management as well as a lack of appropriate regulations, shrimp aquaculture itself may have several adverse environmental impacts. Most of the land used for shrimp ponds previously comprised salt marshes, mangrove areas and agricultural lands (Paez-Osuna, 2001). Since the effluents from shrimp aquaculture typically are enriched in suspended solids, nutrients, chlorophyll a and biochemical oxygen demand (BOD), the effluents often contribute to eutrophication of receiving waters (Dierberg & Kiattisimkul, 1996; Paez-Osuna et al., 1998). Diseases are also recognized as the biggest obstacle to the future of shrimp aquaculture. Diseases in farms and hatcheries are caused by the invasion of protozoa, fungi and bacteria, but viral diseases provoke the greatest losses (Paez-Osuna, 2001). Other environmental impacts of shrimp aquaculture include: exotic shrimp introductions, salt water intrusion due to active pumping of groundwater into coastal ponds, disposal of sediments from culture ponds with
accumulated nutrients and other chemicals, and escapement of aquatic crops and their hazard as invasive species.

Environmental awareness and concerns about sustainability of shrimp culture became increasingly important to the informed public during the 1990s. Given the potential adverse impacts and the large economic value of shrimp aquaculture, innovative techniques and integrated management are needed. Stringent government regulations and increased awareness of the impacts of effluents on receiving waters have encouraged the development of new technologies and innovations, helping to make the aquaculture industry more sustainable and economically viable (Boyd et al., 1998). Some methods have been developed to help to improve the water quality in discharge water, such as recirculating systems (Rosati & Respicio, 1999), constructed wetlands (LaSalle et al., 1999), and better feeds and feeding practices (Cho & Bureau, 1997). These innovations can reduce the load of organic matter and biosolids in aquaculture effluent (McIntosh & Fitzsimmons, 2003).

1.1.3 RAS as more sustainable shrimp culture

The technology of recirculating aquaculture systems (RAS), shown in Figure 1, has been under development and refinement for the past thirty years to address many environmental challenges. RAS potentially alleviates deleterious effects of fish farming on the environment for the following reasons: (1) Water circulates throughout the system such that the total water consumption is reduced; (2) RAS requires much less land than a conventional aquaculture system; (3) RAS enables climate control and allows year-round production with consistent volumes of product, giving RAS a competitive advantage over outdoor systems; (4) Recirculating shrimp systems are usually located inland and use municipal water for artificial seawater preparation, so risk of disease is reduced. Reduced water exchange also reduces disease introduction. (5) Because of excellent water quality, shrimp can be grown in recirculating systems at very high densities. On the other hand, RAS also has some disadvantages, such as high initial investment, complexity and high energy requirements.

![Figure 1 Schematic of a recirculating aquaculture system consisting of shrimp culture system and water treatment system.](image-url)
1.1.4 LCA methods to evaluate sustainability

Life cycle assessment (LCA, also known as life cycle analysis, ecobalance, and cradle-to-grave-analysis) methods are described in a series of the ISO 14000 environmental management standards. LCA is a rigorous framework for conducting cradle-to-grave assessments of the environmental impacts associated with the production and distribution of consumer goods. LCA quantifies material and energy flows across all stages of a product’s life. LCA evaluates the cumulative environmental impact resulting from all stages in the product life cycle. LCA methodology lends itself to a unified, integrated accounting system that makes transparent the environmental and socioeconomic costs of various seafood production processes.

An LCA study consists of four sequential components: goal definition and scoping, inventory analysis, impact assessment and interpretation (Figure 2). Goal definition and scoping requires mapping of the intended application, the reason for the study, the intended audience, the functional unit and system boundaries. Inventory analysis involves compilation and quantification of inputs and outputs throughout the life cycle. Impact assessment evaluates the magnitude and significance of potential environmental impacts of a product system. Interpretation combines the findings of the inventory analysis and impact assessment in order to draw conclusions and present recommendations.

![Life Cycle Assessment Framework](image)

Figure 2 Life Cycle Assessment Framework (from ISO 14040 Standards)

For aquaculture systems, LCA provides a useful model of these complex systems by quantifying and describing interactions of system components. It offers a comprehensive environmental profile of the system as well as a more transparent view of inefficient or potentially damaging production practices. LCA assesses the energy and materials used in production, as well as the wastes released, to evaluate the impact of the entire process on the environment. Additionally, it highlights opportunities in the production cycle for environmental improvements. However, as the application of LCA to aquaculture is a recent development, only a few case studies of LCA in aquaculture have been reported so far.
- **Shrimp farming in Thailand**
Mungkung (2005) conducted an environmental LCA of shrimp farming in Thailand, which included hatchery, farming, processing, distribution, consumption and waste management phases. The functional unit was a standard consumer-package size containing 3 kg of block-frozen shrimp. The system used wild-capture broodstock in the hatchery. The impacts assessed in this study were: abiotic depletion potential, global warming potential, ozone depletion potential, human toxicity potential, freshwater toxicity potential, marine toxicity potential, terrestrial toxicity potential, acidification potential, photochemical oxidant creation potential and eutrophication potential. The main impacts of shrimp culture were marine toxicity, global warming, abiotic depletion and eutrophication. Farming was the key life cycle stage contributing to the impacts. These impacts arose mainly from the use of energy, shrimp feed, and burnt lime. Transport of post-larvae from a non-local source to farms also resulted in significantly higher impacts. This study only analyzed conventional farming systems, and did not cover other farming technologies, such as recirculating shrimp aquaculture systems.

- **Rainbow trout culture in Finland**
Application of LCA to Finnish cultivated rainbow trout production was conducted by Gronroos et al. (2006). The functional unit was one metric ton of ungutted rainbow trout after slaughtering. The processes analyzed include raw material production for feed, feed manufacturing, packaging materials production, package manufacturing, hatchery, fish farming and slaughtering. Environmental impact categories included climate change, acidification, aquatic eutrophication, tropospheric ozone formation, and depletion of fossil fuels. The environmental performance of production methods with different feeds, feed coefficients, and pollution reduction measures were assessed. The results revealed that atmospheric emissions – originating mainly from raw material production, manufacturing and transportation of feed – made only a minor contribution to the total environmental impacts caused by production of rainbow trout in Finland. Phosphorus and nitrogen emissions from fish farms to waters were found to be the most significant emissions contributing to total impacts. The major limitation of this LCA was the incomplete scope of analysis, as the study did not include the stages of fish processing, retail, or waste management.

- **Recirculating production of turbot in France**
The environmental impacts of a water recirculating system for fish farming were studied by Aubin et al. (2006) through the case study of an inland turbot farm located in Brittany (France). Environmental impacts were analyzed using the following indicators: eutrophication potential, acidification potential, global warming potential, net primary production use and non-renewable energy use. This research only analyzed the turbot farming stage, while environmental assessment requires integrative approaches that take into account all the stages and processes and includes their potential environmental impacts at the local, regional and global scale.

Two methods were used to assess the farm's nitrogen, phosphorus and solids emissions: nutrient measurement accounting and nutrient balance modeling. The two methods gave similar
results for solids and phosphorus emissions, while for nitrogen the measurement-based approach only accounted for half the emissions predicted by the model. The uncertainty regarding the potential gaseous nitrogen emissions led the authors to assess impacts according to three scenarios differing with respect to emissions of \(\text{N}_2, \text{N}_2\text{O} \) and \(\text{NH}_3 \). The uncertainty concerning nitrogenous emissions to the atmosphere led to uncertainty with respect to the production system's eutrophication and global warming potentials. Comparison of the results with similar results for production of large rainbow trout in a flow-through system indicated that non-renewable energy use of the turbot re-circulation system was 4 to 6.5 times higher. The acidification potential and global warming potential in two re-circulating system scenarios were three times higher than those of flow-through trout production.

- **Trout farming in France**

Papatryphon (2004) assessed the environmental impacts associated with different feed for rainbow trout production in France, using LCA. The functional unit was the amount of feed required for the production of one metric ton of rainbow trout. To allow comparison on an equivalent basis, the four analyzed feeds were considered in terms of a normalized nutrient profile (40% crude protein, 26% fat, 19.5 kJ/g digestible energy).

The stages assessed were: extraction of raw materials, production and transformation of primary ingredients used, manufacture of feeds, use of feeds at the farm, transport at all stages, and production and use of energy resources. The assessment revealed that use of fishery resources (such as biotic resource use) and nutrient emissions at the farm (such as eutrophication potential) contributed most to the potential environmental impacts of salmonid aquafeeds. Improvements in feed composition and management practices seem to be the best ways to improve the environmental profile of aquafeeds. However, waste management was not assessed in any stage.

To date, none of these research projects analyzed the life cycle performance of shrimp produced by a recirculating system or waste management recirculating system. Comparison of RAS with conventional flow-through farming system has not been conducted either.

1.2 Purpose of study

This study focuses on shrimp culture using indoor recirculating systems located in the United States. The primary objectives are:

1. to conduct an LCA to evaluate environmental and energy performance of RAS;
2. to compare the environmental impact results with other shrimp production systems;
3. to evaluate the specific sources of impacts; and
4. to recommend opportunities for improvement of the system.
2 Goal Definition and Scoping

The functional unit of this LCA is 1000 bags of fresh or frozen whole shrimp. One bag of shrimp contains approximately 1.8 kg shrimp, so the functional unit is equivalent to 1800 kg of shrimp. The following stages were analyzed for the indoor recirculating shrimp aquaculture system: 1) Hatchery, 2) Indoor Recirculating Shrimp Farm (consisting of the shrimp culture system and water treatment system), 3) Processing & Storage, and 4) Transportation (Figure 3 and Figure 4). Baseline (Alternative 1) was a local-scale scenario, which included the hatchery, farm and transportation stages. National-scale production was considered in the marketing scale scenario analysis. The national-scale scenario included the hatchery, farm, processing & storage, and transportation stages. Shrimp consumption was not included in the assessment. Material consumption, energy use and waste disposal were evaluated within the individual life cycle stages, where appropriate.

Figure 3 A life cycle schematic of the recirculating shrimp aquaculture system, analyzed in this thesis.
Figure 4 Detailed life cycle of recirculating shrimp aquaculture system, which highlights the scope of this thesis (excludes brood stock production and consumer stages).
2.1 Hatchery

At a hatchery, broodstock was cultured to post larvae (PLs) which were prepared for shrimp culture farms. In this study, data was collected at hatcheries in China (Ling Cao, personal communication). The source of broodstock was Hawaii and Miami. Larvae were cultured in small concrete rectangular tanks. Seawater was pumped from a central reservoir. Water was removed by siphoning or through a drain during tank cleaning. The culture environment in the hatchery system was controlled at 33 ppt salinity, 27-32°C temperature and pH of 8.0-8.3 (Forbes, 1992). Hatcheries were typically equipped with thermometers, a pH meter, and a microscope which helped to control the culturing environment (Forbes, 1992). Electricity was consumed by several types of equipment, including aerators and water pumps.

In the hatchery, the first larval stage of eggs transformed to nauplii after one day of hatching. After feeding on their reserves for a couple of days, the nauplii morphed to the second larval stage, where the primary visible features are feathery appendages and elongated bodies. Then, the second-stage larvae transformed to the final stage, with segmented bodies, eyestalks and shrimplike tails (Bailey-Brock & Moss, 1992). After three or four days they became post-larvae (PL), which resemble adult shrimp. Usually, PLs were introduced into the grow-out system around 20 days after hatching.

2.2 Recirculating Aquaculture Farm

The activities involved in the shrimp culture farm were based on surveys of a research farm maintained by the Oceanic Institute (41-202 Kalanianaole Highway, Waimanalo, HI 96795). This farm used a recirculating shrimp aquaculture system. Data from this farm was extrapolated to a scale suitable for commercial production, and used in this study to model a recirculating system. The modeled system was assumed to be located in Texas 4 km from the Gulf of Mexico coast.

At the Oceanic Institute, PLs from the hatchery were stocked into rectangular culture tanks. The carrying capacity of the system was 10 kg shrimp / m². The farm modeled in this study consisted of 90 tanks, which each measure 300 m² and are 1.6 m deep. Ten tanks were included in one enclosed building that covered approximately 5000 m² of land (Figure 5). A feasible production volume was assumed to be 800 metric tons per year, so a farm would require 9 buildings of these dimensions. The environment within the building was controlled year-round at a temperature of 23-34°C. During the culturing period, oxygenation was used to maintain dissolved oxygen levels at 5 mg/L in the tanks. In the water reuse system, all effluents from the shrimp tanks passed through a sedimentation tank or settler. Resident time of water in the settler was one hour, after which the water was returned to the shrimp culture tanks.
Figure 5 Layout of Oceanic Institute Farm Building, including 10 tanks for shrimp culture and 2 settlers for water treatment.

Sedimentation (i.e. gravity separation) was one of the simplest technologies available to control the particulate solids in the process water and wastewater. The continuous flow settling basins can be functionally divided into four zones according to their function (Figure 6). The inlet zone served to uniformly distribute the suspension over the entire cross-section of the basin. Sedimentation occurred in the settling zone and the suspended solids and flocs accumulated in the sludge zone. The clarified liquid was generally collected over the entire cross-section of the basin at the outlet zone and discharged.

Figure 6 A schematic of four principal zones of a rectangular continuous flow sedimentation basin

The shrimp production cycle from PLs to market-size shrimp normally takes about 15 weeks, so a given year could have 3.5 culture cycles. The composition of water used in the system depended on farm location and distance from the coast. Water consumption was 480 m3/day – 10% of the total water in the system. Bicarbonate was used to maintain water quality, so that the pH in the tank remained between 6.5 and 7.
A computer spreadsheet was used to design the commercial-scale recirculating shrimp culture system (Losordo & Hobbs, 2000). Most design parameters and assumptions used in the model were based on a data survey completed by the Oceanic Institute (survey questions were provided in Appendix 1). If data based on the actual operation were unavailable, assumptions were made based on the literature. The design spreadsheet, including key parameters and assumptions, are shown in Appendix 2.

2.3 Feed

The hatchery and farm were assumed to use shrimp feed of the same composition but different size. The formulated shrimp feed analyzed in this study met the nutrient requirements of shrimp used in the research farm. Feed producers were unwilling to provide their precise formulas because they are proprietary. Therefore, a formulation for the shrimp feed and associated raw materials (Table 1) were developed for this model based on Hernández et al. (2008). Processing 1 metric ton of feed consumed 2646 kWh of electricity (Papatryphon et al., 2004). Waste output data (Table 1) were from Silvenius and Grönroos (2003). Since electricity consumption was determined primarily by the concentration of nutrients and organic matter in the wastewater, the electricity used for wastewater treatment was calculated based on net electrical consumption associated with treatment of organic matter, set as 1.1 kWh per kg COD removed based on the LCA food DK database (www.lcafood.dk). Table 2 lists the proximate composition of the shrimp feed (Hernández et al., 2008).
Table 1 Raw materials, electricity use and waste emissions for producing 1 metric ton of shrimp feed

<table>
<thead>
<tr>
<th>Raw Materials</th>
<th>%</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>fishmeal</td>
<td>42.20</td>
<td>422</td>
</tr>
<tr>
<td>wheat flour/gluten</td>
<td>26.00</td>
<td>260</td>
</tr>
<tr>
<td>core starch</td>
<td>12.61</td>
<td>126</td>
</tr>
<tr>
<td>soybean meal</td>
<td>6.44</td>
<td>64</td>
</tr>
<tr>
<td>fish oil</td>
<td>2.80</td>
<td>28</td>
</tr>
<tr>
<td>squid meal</td>
<td>2.00</td>
<td>20</td>
</tr>
<tr>
<td>Binder</td>
<td>2.00</td>
<td>20</td>
</tr>
<tr>
<td>soybean lecithin</td>
<td>1.75</td>
<td>18</td>
</tr>
<tr>
<td>Vitamin premix</td>
<td>1.50</td>
<td>15</td>
</tr>
<tr>
<td>mineral premix</td>
<td>1.50</td>
<td>15</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.50</td>
<td>5</td>
</tr>
<tr>
<td>Chromic oxide</td>
<td>0.50</td>
<td>5</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>0.20</td>
<td>2</td>
</tr>
<tr>
<td>total</td>
<td>100.00</td>
<td>1,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electricity</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Production</td>
<td>2,646</td>
</tr>
<tr>
<td>Waste Treatment</td>
<td>0.343</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste Outputs</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne emissions</td>
<td></td>
</tr>
<tr>
<td>particulates</td>
<td>0.48</td>
</tr>
<tr>
<td>Waterborne emissions</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>0.312</td>
</tr>
<tr>
<td>waste water</td>
<td>180</td>
</tr>
<tr>
<td>Solid wastes</td>
<td></td>
</tr>
<tr>
<td>waste to rubbish dump</td>
<td>5.186</td>
</tr>
<tr>
<td>waste, composted</td>
<td>2.078</td>
</tr>
<tr>
<td>waste, hazardous waste</td>
<td>0.243</td>
</tr>
<tr>
<td>waste, water sludge</td>
<td>1.172</td>
</tr>
</tbody>
</table>

Table 2 Proximate composition of shrimp feed

<table>
<thead>
<tr>
<th>Proximate analysis</th>
<th>(% dry basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>8.8</td>
</tr>
<tr>
<td>Crude protein</td>
<td>35.6</td>
</tr>
<tr>
<td>Crude fat</td>
<td>9.3</td>
</tr>
<tr>
<td>Ash</td>
<td>10.8</td>
</tr>
<tr>
<td>NFE</td>
<td>44.3</td>
</tr>
<tr>
<td>Gross energy (kcal/100g)</td>
<td>450.8</td>
</tr>
</tbody>
</table>

2.4 Processing and Storage

Local-scale (Alternative 1) and national-scale (Alternative 2) scenarios were analyzed in the product marketing life cycle phase.

In the local-scale marketing scenario (Alternative 1), shrimp products were sold directly to local consumers at the farm. The main activities in this process were product chilling and transportation from farm to consumers. The national-scale marketing scenario (Alternative 2) more closely resembled a commercial production and a large-scale marketing system. In this scenario, whole shrimp were pre-frozen at the farm or processing plant before being transported to wholesalers by refrigerated truck. The frozen shrimp was stored in freezers at wholesalers and retailers for 30 days and 10 days, respectively. At the retailers, such as supermarkets, the frozen shrimp were thawed in paper boxes and presented on ice in a refrigerated cabinet for sale.

2.5 Transportation

The LCA included transportation of raw materials (i.e. feed, salt, water) and transportation between the hatchery, farm, processing plant, wholesaler, retailer and consumer stages. A detailed description of each transportation stage is discussed in Section 3.1.4.

3 Life Cycle Inventory Analysis

3.1 Material Consumption at Each Stage

3.1.1 Hatchery

Most of the culture farms had their own hatcheries onsite, so the transportation distance for PLs from hatchery to farm was considered to be zero. Due to limited data on hatcheries in the U.S., it was assumed that the main activities involved in this stage were the same as those in China. Inputs, outputs and electricity consumption for the production of 1000 PLs in the hatchery are presented in Table 3. These values of hatchery inputs were based on a survey conducted by Ling Cao (personal communication) in Hainan Island, China. The input data used in the LCA were average inputs from three hatcheries of different size. Production of 1000 PLs required 0.0074 broodstock (the detailed calculation method is presented in Appendix 3). The output and emission data in the table were taken from the Thailand shrimp LCA study (Mungkung, 2005).

Due to limited environmental impact data, the following inputs and outputs were not included
in the impact assessment of the hatchery: brood stock growth, suspended solids and total phosphorus treatment. The items analyzed for the hatchery LCA included consumption of water and feed, electricity used for the hatchery operation, and wastewater effluents (BOD and nitrogen).

Table 3 Inputs, outputs and electricity consumption for production of 1000 PLs in the hatchery. Data were from Chinese shrimp hatcheries (Ling Cao, personal communication) and Thailand shrimp hatcheries (Mungkung, 2005)

<table>
<thead>
<tr>
<th>Hatchery</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatchery size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large</td>
<td></td>
<td></td>
<td></td>
<td>0.0074</td>
</tr>
<tr>
<td>middle</td>
<td></td>
<td></td>
<td>0.834</td>
<td></td>
</tr>
<tr>
<td>small</td>
<td></td>
<td>0.193</td>
<td></td>
<td>0.390</td>
</tr>
<tr>
<td>broodstock (each)</td>
<td>0.143</td>
<td>0.834</td>
<td>0.193</td>
<td>0.390</td>
</tr>
<tr>
<td>seawater (m³)</td>
<td>1.2</td>
<td>1.200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>feed (kg)</td>
<td>0.320</td>
<td>0.247</td>
<td>0.498</td>
<td>0.355</td>
</tr>
<tr>
<td>electricity (kWh)</td>
<td>2.76</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspended Solids (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂ (g)</td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>NO₃ (g)</td>
<td></td>
<td></td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>Ammonia (g)</td>
<td></td>
<td></td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Total P (g)</td>
<td></td>
<td></td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>electricity used to treat wastewater (kWh)</td>
<td></td>
<td></td>
<td></td>
<td>0.00022</td>
</tr>
</tbody>
</table>

3.1.2 Farming

Table 4 presents material consumption for facility construction and shrimp culture operation at the model farm. The table indicates the construction materials used for one greenhouse with shrimp culture tanks and sedimentation tanks. Service life for construction materials was assumed to be 25 years. The annualized values reported in the table were calculated by dividing total construction materials by 25. Inputs and outputs for shrimp culture listed in the table are for producing 84,000 kg of shrimp, which is the shrimp production per year per greenhouse. Inputs for shrimp culture included feed, water, PLs (the shrimp larvae themselves) and electricity. Since the farm was located close to the coast and used only seawater, the consumption of salt and freshwater for creating artificial seawater was zero. The outputs of the system include biosolids, wastewater and CO₂. In the baseline scenario, biosolids were transported to a landfill 75 km away. Biosolids handling processes included dehydration, liming, storage and transportation (Houillon and Jolliet, 2005). This RAS farm had a liquid discharge of 174,751m³/year. The nutrients concentration in the effluent was estimated based
The electricity consumption for wastewater treatment was assumed as 4 kWh per kg nitrogen removed based on the LCA food DK database (www.lcafood.dk). The impact assessment in Section 4 includes the production of LDPE greenhouse covers, lumber (sawn timber, plywood) for posts and beams, concrete for tanks, PVC pipes, feed, PLs, electricity for shrimp culturing, biosolids treatment, and CO2 emissions.

In the RAS farm system, phytoplankton consumed CO2, nitrifying bacteria produced CO2 and consumed NH3, and shrimp generated CO2 and NH3 gas during their growth. It was assumed that the phytoplankton produced 2mgO2 \cdot L^{-1} \cdot hr^{-1} (Burford et al., 2003), the ratio of O2 to CO2 was 1:1, and 2.8mgCO2 \cdot L^{-1} \cdot hr^{-1} was consumed by photosynthesis. Thus, to produce 1800 kg shrimp (the functional unit in this study), phytoplankton consumed 2478 kgCO2. Nitrifying bacteria converted 3.2mgN \cdot L^{-1} \cdot day^{-1} by nitrification (Rakocy et al., 2004), so 709 kg CO2 was produced by nitrifying bacteria to produce 1800 kg shrimp. The amount of CO2 generated by shrimp was based on the amount of feed and O2 consumption. The feeding rate was set at 900 kg feed per day in each greenhouse (Appendix 2). Each unit of feed required 0.25 units of oxygen for fish metabolism (Timmons et al., 2002), thus 225 kg O2 was consumed per day in each greenhouse. The production of 1800 kg shrimp generated 2420 kg CO2 based on a calculation that assumed aerobic respiration. Therefore, taking the 2420 kg CO2 generated by shrimp, plus 709 kgCO2 generated by nitrifying bacteria, minus 2478 kg CO2 consumed by phytoplankton, the net CO2 emissions by RAS was 651 kg for 1800 kg shrimp production. This will be offset by carbon fixed in feed production.

Table 4 Construction materials, culture inputs, and waste production for one modeled greenhouse for one year

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs for Construction</td>
<td></td>
</tr>
<tr>
<td>LDPE greenhouse cover (kg)</td>
<td>138</td>
</tr>
<tr>
<td>sawn timber (m³)</td>
<td>1.1</td>
</tr>
<tr>
<td>plywood (m³)</td>
<td>0.002</td>
</tr>
<tr>
<td>concrete for tanks (kg)</td>
<td>139,594</td>
</tr>
<tr>
<td>HDPE liner (kg)</td>
<td>8,511</td>
</tr>
<tr>
<td>PVC pipe (kg)</td>
<td>117</td>
</tr>
<tr>
<td>Inputs for Culturing</td>
<td></td>
</tr>
<tr>
<td>seawater(m³)</td>
<td>175,200</td>
</tr>
<tr>
<td>feed (kg)</td>
<td>165,375</td>
</tr>
<tr>
<td>post larvae (#)</td>
<td>5,250,000</td>
</tr>
<tr>
<td>electricity (kWh)</td>
<td>370,404</td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
</tr>
<tr>
<td>biosolids (kg)</td>
<td>453,600</td>
</tr>
<tr>
<td>wastewater (m³)</td>
<td>174,751</td>
</tr>
<tr>
<td>CO2 (kg)</td>
<td>28,188</td>
</tr>
</tbody>
</table>
3.1.3 Processing and Storage

Two quite different alternatives for shrimp processing and storage were examined in this study. For the local marketing alternative (Alternative 1), 12.15 kWh of electricity was needed to keep 1800 kg chilled shrimp fresh for 10 days. Electricity consumption was calculated based on the cold storage energy requirement of 0.0025 MJ/L/day (Carlsson-Kanyama and Faist, 2000) and an estimated volume of 3.5L for 1.8 kg shrimp. Additionally, 9 kg of PET film was consumed for packaging 1800 kg of shrimp (Mungkung, 2005). For the commercial marketing alternative (Alternative 2), 1000 shrimp packages, weighing 1.8 kg each, would be transported to processing plants which were close (30 km) to the model farm. The shrimp were then frozen at the processing plant using a block freezing process, which required 1560 kWh of electricity (Mungkung, 2005). Then the frozen shrimp was transported to wholesalers and retailers by refrigerated-truck. The frozen shrimp was assumed to be stored for 40 days at wholesalers and retailers before being sold. Electricity was consumed by the freezers during storage at a rate of 0.0025 MJ/L/day (Carlsson-Kanyama and Faist, 2000), requiring a total of 97.2 kWh of electricity per 1800kg shrimp.

3.1.4 Transportation

There were 10 transportation stages for the production cycle in this model, shown in Figure 4.

Transportation of raw feed materials (Transportation 1) included the following conditions. Some raw materials in feed were not commonly produced, such as squid meal. Although Asian countries were the main producers, some South American countries such as Peru also produced squid meal. Additionally, Peru and Chile were the largest fishmeal producers, but the US produced a small portion of fishmeal. For the shrimp feed analysis, this study assumed that all the feed raw materials were manufactured locally (10km) except for the squid meal, which was assumed to be transported from South America (5200km).

Transportation of feed to the hatchery and farm (Transportation 2 and 3) was assumed to be from feed suppliers located in Texas. Diesel-trucks were used to transport feed from supplier to the hatchery and farm (50 km).

Transportation of PLs (Transportation 4) was from the hatchery to farm. Because the hatchery and farm were located at the same site, this transportation was negligible (assumed to be zero).

Transportation of salt (Transportation 5) was from the salt supplier to farm. Since the farm was very close to the coast, all of the water used in the farm was seawater (Transportation 7). No artificial seawater was created at the farm by mixing transported salt and freshwater, so the transportation of salt was zero.

Transportation of shrimp product (Transportation 6) was assumed to be from farm or retailer
to consumer. As mentioned previously, the model farm was assumed to be located near the Gulf Coast in Texas. This study also assumed the farm or retailer sold shrimp to consumers located within 60km, with an average transportation distance of 25 km. Passenger vehicles were used in this process with an assumed average load of 1.57 passengers (U.S. Department of Transportation, 2001).

Transportation of seawater (Transportation 7) was assumed to be from the coast area to farm, because the farm was located in Texas in close proximity to the coast (4km). Impacts for seawater transportation from the coast to farm were assumed to be negligible.

Commercial transportation of the shrimp product (Transportation 8, 9 and 10, in Alternative 2 scenario only) was assumed to be between the farm, processing plant, wholesalers and retailers. Transportation distance from the farm to processing plant (Transportation 8) was 30 km. The distance from the processing plant to wholesalers was 300 km. The distance from the wholesalers to retailers was 75 km. Refrigerator-trucks were used for the commercial transportation process, which consume an additional 1.89 L of diesel fuel per hour compared to regular diesel trucks. The average speed of the refrigerated-truck was assumed to be 55 mile/hour. The transportation time was obtained by dividing the transportation distance by the average speed. The additional diesel consumption for maintaining the low temperature in the refrigerator-truck could then be calculated.

3.2 Life Cycle Energy Use

Shrimp farming required the most life cycle energy of any stage (95%, Figure 7) in the local market scenario (Alternative 1). The total life cycle energy for 1.8 kg of shrimp product for this scenario was 179 MJ, or 99 MJ/kg shrimp. In the shrimp farming stage, electricity consumption was the main contributor to energy use, while feed production and construction materials also played important roles (Figure 8). The energy intensities of various construction materials are listed in Appendix 4. The electricity requirements of equipment at the shrimp farm were 4.2 kWh/kg shrimp, mainly consumed by water pumps (59%), foam fractionator pumps (17%), and oxygen generators (24%) (Figure 9). Feed production energy was primarily distributed between fishmeal production (60%) and the feed manufacturing process (24.5%), while production of the other ingredients consumed only 15.4% of the energy (Figure 10). Moreover, energy intensity was 2.4 MJ/kg for crop ingredient production while it was 10.2 MJ/kg for fishmeal and fish oil production, which appears more energy intensive.
Figure 7 Contributions to energy use associated with the life cycle production and distribution of 1800 kg fresh shrimp produced in the US (Alternative 1 scenario).

Figure 8 Contributions to energy use associated with the farming of 1800 kg fresh shrimp produced in the US (Alternative 1 scenario).
4 Life Cycle Impact Assessment Results

A life cycle assessment was carried out to explore the environmental impact created by each stage of the shrimp production system. Eco-indicator 95 was used as the impact assessment method to quantify: global warming potential (GWP), ozone depletion potential (ODP), acidification potential (AP), eutrophication potential (EP), heavy metals (HM), carcinogens, pesticides (PC), summer smog (SS), winter smog (WS), and solid waste (SW). Simapro (Version 7) was utilized to obtain all background data on raw material production, energy generation, and waste disposal.

In terms of overall environmental impacts, shrimp farming was the dominant stage (Figure 11). Shrimp farming impacts came from use of shrimp feed, biosolids treatment, electricity generation, wastewater treatment, construction material production and shrimp metabolism. Electricity consumption was the largest contributor to global warming, acidification, eutrophication, carcinogen emission, heavy metal, winter smog and solid waste emission (Figure 12). As shown in Figure 10, water pumps were the largest user of electricity. Shrimp
feed production also played an important role in ODP (Figure 12). The impacts of biosolid disposal in a landfill were negligible. Impacts of other biosolid handling alternatives are discussed in Section 5.4.

The impacts of feed production mainly arose from fishmeal production (Figure 13). As shown in the figure, the net eutrophication impact of fishmeal, fish oil and squid meal were negative, because the amount of phosphorus consumed by fish was more than the amount emitted during fish ingredient production.

Normalization was an optional step in life cycle impact assessment that was used to better understand the relative importance and magnitude of the impact category (Figure 14). Normalization calculates the magnitude of indicator results relative to reference information (ISO 14042 standards 2000E). In this study, the normalized score for a certain impact category was obtained by determining the ratio of the absolute environmental impact results and the respective European annual per capita impacts. The European annual per capita impacts are given in Appendix 5 (Goedkoop, 1995). As shown in the figure below, WS, GWP and AP were the most significant environmental impacts and farming was the main contributor.

![Graph showing contributions to each impact category](image)

<table>
<thead>
<tr>
<th>GWP</th>
<th>ODP</th>
<th>AP</th>
<th>EP</th>
<th>HM</th>
<th>Carcinogens</th>
<th>PC</th>
<th>SS</th>
<th>WS</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,633 kg CO₂</td>
<td>0.003 kg CFC-11</td>
<td>91.1 kg SO₂</td>
<td>2.7 kg PO₄</td>
<td>0.028 kg Pb</td>
<td>0.00019 kg B(a)P</td>
<td>0.0 kg act.subst</td>
<td>5.3 kg CH₄</td>
<td>93 kg SPM</td>
<td>1.129 kg</td>
</tr>
</tbody>
</table>

Figure 11 Contributions to each impact category associated with the life cycle production and distribution of 1800 kg of fresh shrimp produced in the US (local scale scenario)
Figure 12 Contributions of major inputs and outputs to impacts associated with producing 1800kg of fresh shrimp.

Figure 13 Contributions of each feed component to impacts associated with shrimp feed production needed to grow 1800kg of shrimp.
5 Scenario Analysis

5.1 Transportation Scenario Analysis

Baseline was a local-scale scenario, which included the transportation of feed to farm and hatchery, PLs to farm, and the shrimp product to consumer (Transportation 1-6). In this section a scenario analysis was conducted to determine the relative significance of each transportation stage (Transportation 1-6). A scenario analysis of marketing scale is conducted in Section 5.3, which includes the analysis of shrimp commercial distribution (Transportation 8-10). The following two scenarios were analyzed in this section:

Option 1: local scale; distance was 300 km; by truck
Option 2: regional scale; distance was 1500 km; by truck

For example, in the scenario analysis of Transportation 1 (Figure 15, a), when Option 1 was chosen, the transportation from feed material suppliers to feed mill (Transportation 1) was 300 km by truck while all other stages of transportation remained the same as the baseline. The baseline conditions were described in Section 2.

The impact categories in the scenario analysis were global warming, acidification, eutrophication, heavy metal, winter smog and energy use. According to the normalized
impacts, WS and EU were the highest impact categories (Figure 15). The impacts of transporting feed raw materials (Transport 1), shrimp feed to farm (Transport 3) and shrimp product to consumer (Transport 6) were noticeably different, but small, when comparing the two scenario options (Figure 15, a, c, e). The impacts of transporting feed to the hatchery and PLs to the farm showed almost no difference between the two scenarios (Figure 15, b, d). Since the consumption of feed at the hatchery and PLs at the farm was very small, the transportation of the small amount of feed and PLs had little impact on the system as a whole. Distribution of each transportation stage to total transportation impacts is shown in Appendix 7.

![Graph showing transportation impacts]

a) from feed raw material suppliers to feed mill (Transportation 1)

![Graph showing transportation impacts]

b) from feed mill to hatchery (Transportation 2)
c) from feed mill to farm (Transportation 3)

d) from hatchery to farm (Transportation 4)
5.2 Marketing Scale Scenario Analysis

The flow chart presented in Figure 4 shows both commercial alternatives: Alternative 1 (Transport 1-4, 6) and Alternative 2 (Transport 1-4, 6-10). Both scenarios had the hatchery, farm, and shrimp feed stages in common. The differences between the two alternatives were product processing, storage and transportation activities. For local-scale marketing (Alternative 1), shrimp would be sold directly to local consumers at shrimp farms in Texas. The main activities in this process were product chilling and transporting the product 25 km from the farm to consumers. In a national-scale marketing scenario (Alternative 2), shrimp was sold to consumers in Michigan. In this scenario, it was assumed that the farm, processing plant, and wholesalers were located in Texas while retailers and consumers were located in Michigan. The shrimp was pre-frozen at the farm or processing plant. Frozen shrimp was then transported to wholesalers and retailers by refrigerated-truck. The frozen shrimp was stored in freezers at wholesalers for 30 days and retailers for 10 days. The transportation distance was 30 km from farm to processing plant (Transport 8), 300 km from processing plant to wholesalers (Transport 9), 2190 km from wholesalers to retailers (Transport 10), and 25 km from retailers to consumers (Transport 6).

The scale of marketing had a large impact on life cycle energy usage and environmental impacts. Energy consumption and environmental impacts in the national scale scenario (Alternative 2) were almost 1-2 times that of the local-scale scenario (Alternative 1) (Figure 16). This was due to longer transportation distances using refrigerated trucks, which consume more diesel than regular trucks for temperature control. More electricity was consumed for
shrimp freezing and cold storage in the national-scale scenario than the local-scale scenario which involved only shrimp chilling.

Figure 16 Normalised LCA results for 1800 kg of fresh shrimp production and distribution in the US for marketing scale scenario analysis (Alternative 1 is local-scale marketing and Alternative 2 is national-scale marketing).

5.3 Farm Location Scenario Analysis

In the baseline case (local-scale marketing scenario, described in Section 2), the model farm was located near the Gulf Coast in Texas and all of the water used in the farm was seawater. When the farm was located further away from the coast, a portion of water used in the system was assumed to be made by mixing salt and freshwater while the remainder would be trucked from the sea. Therefore, salt and freshwater consumption and transportation were modeled in the farming process when farms were not close to the coastal area. To evaluate the impact of the farm location, 3 scenarios were developed based on the proximity of the farm to the coast. Transportation of salt from supplier to the farm was assumed to be 30km by truck in the 3 scenarios. The 4th scenario was developed to evaluate the impact of a farm located in Hawaii compared to mainland farms. The 4 scenarios were:

Option 1: farm was close to the coast (10km); 25% of total water used by the farm was artificial water and 75% was seawater; seawater was trucked from the coast
Option 2: farm was moderately far from the coast (50km); 50% of total water used in the farm was artificial water and 50% was seawater; the seawater was trucked from the coast
Option 3: inland farm, located in Michigan; 100% of water used in the farm was artificial seawater
Option 4: farm was located on the coast in Hawaii. At this farm 100% seawater was used, and feed was transported from Texas by barge (around 6260 km from Texas to Hawaii). Road transportation from the feed supplier to the port in Texas, and from the port to farm in Hawaii represented small distances, so were neglected. As a whole, the only difference between Option 4 and the baseline was transportation of feed from supplier to farm and
Option 1, 2 and 3 consumed more energy and generated more GHG (GWP), SO₂ equivalent (AP) and PO₄ equivalent (EP) impacts than the baseline system (Figure 17). This was caused by the long distance transport of seawater, and consumption of salt and freshwater for making artificial seawater. It indicates that the impacts of long distance seawater trucking from a coastal area traded off against impacts with making artificial seawater at the farm. The impacts of Option 1 were lower than Option 3 (Figure 17); when the farm was located close enough to the coastal area (i.e. Option 1) trucking some seawater was a better choice. However, closer proximity of the farm to the coast did not necessarily improve environmental performance. For example, Option 2 (shorter trucking distance with a larger portion of seawater) produced much higher impacts than Option 3 (Figure 17). It indicated that when the farm was located far from the coast (i.e. Option 3), making artificial seawater was preferable in terms of energy use and environmental impacts. On the other hand, compared to a farm located on the mainland coast (baseline), a farm in Hawaii (Option 4) resulted in 40-338% higher environmental impacts due to longer distance transport of feed from the mainland to Hawaii (Figure 17).

Figure 17 Normalised LCA results for 1800 kg of fresh shrimp production and distribution in the US for farm location scenario analysis.

To further investigate the environmental impacts of farm location when the shrimp consumer is in Michigan, two scenarios were compared. Scenario 1 was the national-scale scenario (Alternative 2), in which shrimp was cultured in the RAS coastal farm in Texas, then frozen and transported to Michigan to be sold. In Scenario 2, the farm was an inland farm located in Michigan. Fresh shrimp was sold from the farm directly to local consumers in Michigan. Figure 18 presents the life cycle results of these two scenarios. The impacts of shrimp culture (farming only) in Michigan (Scenario 2) were 2.6-12 times those in Texas (Scenario 1). This
was due to a large amount of salt consumed at the Michigan inland farm for making artificial seawater, which increased the energy consumption and impacts in farming. However, the impacts of processing and transporting frozen shrimp cultured in Texas (Scenario 1) were 5-7 times greater than those of local distribution in Michigan (Scenario 2). Overall, Scenario 2, with the local inland farm and local distribution, produced 152-392% higher impacts. The results did not include the impacts of the energy required to heat the Michigan shrimp farm. If the heating parameter was included, the energy use and environmental impacts of culturing shrimp in Michigan would be even higher. This result provides evidence that it was better to buy shrimp produced on Southern US coast than culture shrimp locally in Michigan, in terms of energy use and environmental impacts.

Figure 18 Normalised LCA results for 1800 kg of shrimp production in 1) Michigan and 2) Texas and shrimp distribution to Michigan

5.4 Biosolids Treatment Scenario Analysis

Scenario analysis based on Houillon and Jolliet (2005) was conducted on the impacts of six biosolids treatment methods: spreading of limed pasty sludge on agricultural land (AGRI), incineration of pasty sludge in a fluidised bed (INCI), wet oxidation of liquid sludge (WETOX), pyrolysis of dried sludge (PYRO), incineration in cement kilns of dried sludge (CEME), and landfilling of limed pasty sludge (LANDF). Electricity and natural gas consumption for sludge treatment and heating were analyzed in the six treatment alternatives. Energy generation from the treatment processes was also taken into account. For example, in fluidized bed incineration, heat was recovered from the flue gas, which enabled natural gas savings. Based on the Houillon and Jolliet (2005) study, incineration in fluidized beds and agricultural spreading were the most attractive processes from an energy perspective, while incineration in cement kilns had the best global warming balance. Although the six sludge
treatment scenarios used different techniques, they did not make significant differences in the life cycle results (Figure 19). Saline sludge discharged from the RAS farm contains large amounts of salt. Due to limited information about saline sludge treatment, treatment of municipal waste sludge was analyzed in this study. To treat saline sludge and water, a desalination process will be needed and extra material and electricity consumption may also be required.

Figure 19 Normalised LCA results for 1800 kg of fresh shrimp produced in the US (Alternative 1 scenario) for biosolids treatment methods scenario analysis.

6 Comparison with Conventional Shrimp Aquaculture

The LCA of frozen shrimp produced in Thailand was modeled by Mungkung (2005). This section compares the environmental performance of shrimp production in the RAS and conventional flow-through culture systems. The life cycle performance of shrimp production and distribution were also compared. Mungkung (2005) used CML 2000 as her analysis method, and used 1.8kg of shrimp as a functional unit. To make the results comparable, the same analysis method and functional unit were used for RAS in this section, for this comparison only. The environmental impact categories assessed include AP, EP, GWP and ODP.

6.1 Shrimp Culture System Comparison

This assessment considered water consumption, electricity use, and environmental impacts attributed to the RAS and conventional culture systems to compare their performance for the farming stage only. As expected, the recirculating system used much less water than the conventional aquaculture system because RAS realized water reuse by using a water
treatment system onsite. For 1.8 kg shrimp production, water consumption in the Thailand conventional farm was 12.3 m3, or 6.8 m3/kg shrimp (Mungkung, 2005). Inventory analysis of the US farm indicated that water consumption for 1.8 kg shrimp production at the RAS farm was 3.8 m3, or 2.1 m3/kg shrimp – just 31% of the water used by the conventional farming system.

While RAS was better regarding water savings, it was not as energy efficient as the conventional aquaculture system. Energy consumption for 1.8 kg of shrimp production at the Thailand conventional farm was 5.4 kWh, or 3 kWh/kg shrimp (Mungkung, 2005). The energy consumption for 1.8 kg shrimp production for the RAS farm was 7.8 kWh, or 4.3 kWh/kg shrimp – 1.4 times that of the conventional shrimp farm. Operation of RAS required more electricity for water recirculation and treatment in the system.

As shown in Figure 20, EP for the conventional farm was 1.4 times greater than that of the RAS farm, due to the impacts of wastewater treatment for the conventional farm. The GWP was also higher for the conventional farm than for the RAS farm, because of the usage of burnt lime. On the other hand, the conventional farm produced a lower AP impact than the RAS farm.

![Normalized LCA results for 1.8 kg of shrimp produced in a conventional flow-through culture system and RAS](image)

Figure 20 Normalized LCA results for 1.8 kg of shrimp produced in a conventional flow-through culture system and RAS

6.2 Total Life Cycle Comparison

The life cycle impacts of 1.8 kg of fresh shrimp cultured in a conventional farm and in a RAS farm were compared. These two farms were both assumed to be located at the coastal site in Texas and use local-scale distribution model. The local-scale marketing scenario was described in Section 3.1.3. Overall, the only difference between these two scenarios was the farming stage.
The conventional flow-through farm in Thailand (assumed to exist in Texas) used an intensive farming system coupled with an environmental management system, following the Code of Conduct guidelines developed by the Department of Fisheries in Thailand (Mungkung, 2005). The RAS farm was described in Section 2.2 and Section 3.1.2.

The conventional flow-through farm scenario produced higher impacts of EP, GWP and ODP, but a lower AP impact (Figure 21). The life cycle comparison results were similar to the farming stage comparison (Figure 20), which isn’t surprising because shrimp culture was a dominant stage in the life cycle system.

An environmental performance comparison was also made between shrimp production by RAS in the US and shrimp production by the conventional farming system in Thailand. The US scenario was the baseline (Alternative 1, local-scale scenario) analyzed in Section 4 in this study. On the other hand, the Thailand scenario was an international-scale system. The shrimp produced in Thailand were imported to the US for sale. Transport of the shrimp product from Thailand to the US (14,630 km by container ship) was included in the assessment. For the Thailand system, the PL rearing at Chacheongsao hatchery, shrimp culturing at a Thailand farm, product processing, and storage were described in Mungkung (2005).

Production and sale of shrimp in the US generated 15-82% lower AP, EP, GWP and ODP impacts than production of shrimp in Thailand and subsequent transport to and consumption in the US. (Figure 22). The results indicated that culturing shrimp by RAS locally in the US was preferable than importing shrimp from a conventional farm in Asia.
7 Conclusion

This study evaluated the environmental and energy performance associated with shrimp produced by a recirculating culture system in the US. LCA results revealed that shrimp farming contributed the most to the energy use and environmental impacts in the life cycle system. The energy demand and pollutant emissions in farming mainly came from electricity consumption: electricity use represented 58% of energy use and produced 4-86% of environmental impacts. The use of shrimp feed accounted for 23% of energy use and 5-88% of environmental impacts in farming. In feed production, fishmeal was an important ingredient in terms of energy use and environmental impacts.

Normalization was used to assess the relative significance of different impact categories to a chosen baseline. This analysis suggested that global warming, acidification and winter smog were three important impact categories. The normalized score for a certain impact category was obtained by determining the ratio of the category indicator result of the product and that of a reference. In this study, European annual per capita impacts were used as the reference. However, with a different reference case (i.e. annual per capita in the US), the normalized score of each impact category could change significantly.

The study provided a basis for comparison with other aquaculture systems. It revealed that water used by a RAS was 31% of that by a flow-through system. On the other hand, electricity usage by the RAS was 1.4 times that of the flow-through system, because operation of the RAS required more electricity for water recirculation and treatment in the system. The results confirmed the expectation that total water usage was reduced and the energy requirement increased at the RAS farm. From an environmental impact perspective, the RAS produced lower GWP, EP, and ODP impacts while the conventional farm showed better
performance in terms of AP. There was a trade-off between energy consumption, water use and environmental impacts. It is difficult to conclude, in general, which culture technique is better. The choice depends on the importance of individual impacts, or a subjectively weighted aggregate environmental impact score, which was not calculated in this study.

A scenario analysis was also conducted to examine transportation, farm location, biosolids treatment and marketing. Generally speaking, a smaller marketing scale generated lower impacts because of energy savings in product transportation and storage. Impacts of the local-scale scenario were just 42-87% of those in the national-scale scenario.

Farm location was also an important factor. There was a trade-off between trucking seawater and making artificial seawater locally. The energy use and environmental impacts in mainland coastal farms were 30% and 9-37% of those in inland farms, respectively. It was recommended that with the same culture technique and product distribution, coastal farms were preferable to inland farms in terms of energy savings and pollution reduction.

When the shrimp consumer is in Michigan, buying shrimp from the Southern coast saved 70% energy and reduced 86-643% pollutant emissions, compared to culturing shrimp locally in Michigan. The results did not include the impacts of the energy required to heat the Michigan shrimp farm. If the heating parameter was included, the energy use and environmental impacts of culturing shrimp in Michigan would be even higher. Moreover, for American consumers, producing shrimp by RAS in this country was recommended, compared to importing shrimp from Asia. Shrimp production and distribution in the US resulted in a 15-82% reduction in pollutant emissions.

The LCA results were based on a scale-up of a research scale recirculating farm and included a wide range of assumptions. When design parameters could not be obtained from the Oceanic Institute, in the design of the recirculating aquaculture system, they were based on literature data. For example, I assumed that the service life of construction materials in the farm was 25 years. These assumptions may affect the accuracy of the LCA results. In addition, several assumptions were made to model transportation and facility location. For example, transportation from farm to consumer was assumed to be 30km by passenger vehicle. It was also assumed that the farm and hatchery were located on the coast in Texas. Different locations for the farm and hatchery lead to changes in the impacts of raw material transportation. Due to these assumptions and uncertainties, a scenario analysis was conducted to determine the impacts of alternatives to the transportation, farm location, marketing scale and biosolids handling baseline assumptions. Results revealed that farm location and marketing scale were important to the system, while transportation and biosolids handling were not significant factors.

Disease issues were not analyzed in this study. RAS was located in a closed building and the system had little air and water exchange with the outdoor environment, so disease may not be a significant problem. This issue should be considered in further evaluation of RAS.
In future research, analysis of commercial-scale recirculating shrimp farms should be conducted. Moreover, considering the significance of electricity consumption in the farm stage, future studies could also focus on new strategies for energy saving at the farm (e.g., the water pumps at the farm). To improve the energy performance in the RAS operation, use of renewable energy is a possible solution. In addition, the opportunity to reduce the water replacement rate for the RAS should be investigated. 10% water replacement based on Oceanic Institute led to large impacts for a RAS farm in Michigan, due to the impacts associated with a large quantity of salt replacement. General conclusions could not be drawn in terms of energy use and pollutant emissions for all sizes of recirculating shrimp farms. Sensitivity analysis of farm size would be required, and was not performed in this study. Finally, this LCA focused on environmental issues, which should be balanced against economic cost. Due to limited information, life cycle cost analysis was not conducted in this study.

8 Literature cited

9 Appendix

Appendix 1 Shrimp aquaculture system survey for life cycle assessment (LCA)

Survey Introduction
Thank you very much for participating in this research project, Life Cycle Assessment of Sustainable Shrimp Aquaculture. The research is conducted by the School of Natural Resources and Environment and College of Engineering at University of Michigan. The major objectives of this study are to conduct life cycle analysis (LCA) and life cycle cost analysis (LCCA) to evaluate the environmental, energy and economic performances of zero-exchange, re-circulating indoor aquaculture systems. In addition, we will compare these results with outdoor conventional aquaculture system to determine the potential improvement of your system. By participating in this research, you will provide you with the material/energy consumption, environmental impacts and economic profile of your system and highlight opportunities for improvement. The raw data and information of individual farms will not be presented in the future published document; we will only present the life cycle analysis results and recommendations (the paper Potential and Limitation of Life Cycle Assessment in Setting Ecolabelling Criteria by Mungkung et al. will help you to have a better idea what information will be presented in the published documents). Figure 1 shows the life cycle stages of the shrimp aquaculture system and will help you to have a better idea of the question organization in this survey. (Note: if the data you have are different units than requested in this survey, please provide your data and unit and we will perform the unit conversion.)

The principle investigator (PI) of the research is Professor James Diana jimd@umich.edu. If you have any questions about this survey or want us to go over all the survey questions, please contact Wenting Sun sventing@umich.edu, 734-846-2862.

Figure 1. Life cycle stages of shrimp aquaculture system

General Information
Interviewer Name: _________________________ Interview Date: _____________________________
Contact (email/telephone): ___
Do you want us to put your farm’s name in the acknowledgements of this research? [] Yes [] No

A. Indoor Recirculating Shrimp Farming System

B. Pre-Farming (Hatchery)

C. Post-Farming

D. Cost

Materia

Energy

Transportation

Waste

SC

WTS

Processing & Storage

Wholesaler &
1. General Information
Location of shrimp farming system (City/State/Zip code): ______________________________________
Name of the organization that manages the system: ______________________________________
Expected service time of your system: _______ years
Number of employees working in the farming system: __________ employees

2. Shrimp Culture System (SCS)
Please write a paragraph and sketch a process flow diagram to describe your shrimp aquaculture system.
In the description paragraph and flow diagram, please indicate basic information and significant
features/parameters about the aquaculture system. The following questions may give you some
guidance.

Number of shrimp culture tanks: _______; size of each tank: _______ feet³ or m³ or gallon
Shrimp culture system land cover (exclude offices): _____________ feet² or acres
How long is one culture cycle (from post-larva to harvest)? ____ months/cycle
Number of culture cycles per year: ___________ cycles/year

Shrimp aquaculture system description:

Process flow diagram of the Shrimp Culture System

2.1 Material Consumption
2.1.1. Feed
Feed composition:
a. Commercial pelleted feed: _______________________________ (brand)
 Feeding rate: _______ lb/tank/week (month); feed price: _______ $/lb (kg)
 Feed supplier location (City/State/Zip code) ______________________________________
 Transportation from suppliers to shrimp farming system:
Vehicle type: □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator
Vehicle load: _______ lb (kg) feed /vehicle
b. Any supplement added
Feeding rate: ________ lb/tank/week (month)

<table>
<thead>
<tr>
<th>Ingredient (i.e. corn, husk)</th>
<th>Weight percentage (%) (ingredient weight/feed weight)</th>
<th>Ingredient weight (lb)</th>
<th>Price ($/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 Water

Water flow chart in recirculating shrimp farm system

Water source percentage: _______ % freshwater; _______ % seawater
Price: freshwater________$/1000 gallon; seawater________$/1000 gallons
Water volume in Shrimp Culture System V1: _______ gallons
Water volume in Water Treatment System V2: _______ gallons
Volume of water flow through treatment system Q1: _______ gallons/day (week or month)
Volume of additional water refilled Q2: _______ gallons/day (week or month)
Seawater supplier location (City/State/Zip code)____________________________________
Transportation from seawater supplier to shrimp farming system:
Vehicle type: □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator
Vehicle load: ______________ gallon seawater/vehicle

2.1.3 Salt (If system uses freshwater, salt is needed.)
Salt-water rate: _______ lb salt/gallon freshwater; salt consumption: _______ lb salt/week (month)
Salt price: _______ $/lb (kg)
Salt supplier location(City/State/Zip code)____________________________________
Transportation from salt supplier to shrimp farming system:
Vehicle type (i.e. UPS delivery truck):____________________________________
Vehicle load: _______ lb (kg) salt /vehicle

2.1.4 Post-Larvae
Breed of post-larvae: □ white shrimp □ tiger shrimp □ Other: ______________
Post-larvae price: _______ $/lb (kg)
Density of post-larvae in shrimp aquaculture system:
_________lb /tank/cycle or _______ (amount)/m^2 (m^3) or _______ (amount)/tank/cycle
2.1.5 Other Inputs for Shrimp Culture System

Burnt lime: ___________kg (lb)/tank/week (month); Price_________$/ kg (lb)
Limestone: ___________kg (lb)/tank/week (month) ; Price_________$/ kg (lb)

Probiotic substance (i.e. bacteria, yeast):
 a. type ______________ ; ______kg (lb)/tank/week (month) ; Price_________$/ kg (lb)
 b. type ______________ ; ______kg (lb)/tank/week (month) ; Price_________$/ kg (lb)

Micro-organisms (i.e. algae):
 a. type ______________ ; ______kg (lb)/tank/week (month) ; Price_________$/ kg (lb)
 b. type ______________ ; ______kg (lb)/tank/week (month) ; Price_________$/ kg (lb)

Other main input:
 a. name: ____________ ; ______kg (lb)/tank/week (month) ; Price_________$/ kg (lb)
 b. name: ___________; ________kg (lb)/tank/week (month) ; Price_________$/ kg (lb)

2.2 Shrimp production

Weight of shrimp production per cycle _________________ lb (kg)/tank/cycle

Number of shrimp per lb: ______________ (amount)/ lb

If the shrimp product meets any food standard/certification, list here: __________________________________

2.3 Energy consumption in shrimp culture system (exclude offices)

2.3.1 Itemized energy consumption (if data is not available for 2.3.1, please complete 2.3.2. Ideally, you could complete both)

a. Oxygen supplement equipment
 □ Aeration equipment type (i.e. floating paddlewheel, submersible aerator): ______________
 Number of equipment:_____ ; power:___kW or Horse Power (HP); Usage time:_____hours/day (week)
 □ Oxygen generator
 Number of equipment:____ ; power:____kW or HP; Usage time:______hours/day (week)
 □ Other oxygen supplement equipment___
 Number of equipment:____ ; power:______kW or HP; Usage time:______hours/day (week)

b. Ozone generator
 Number of ozone generator:_____ ; power:_____kW or HP; Usage time:______hours/day (week)

c. Lighting
 There are several types of lights with different power and usage time:
 Number of light-1: _____; Bulb wattage:______W; Usage time:_____ hours/day (week)
 Number of light-2: ____ ; Bulb wattage:______W; Usage time:______ hours/day (week)
 Number of light-3: _____; Bulb wattage:______W; Usage time:_____ hours/day (week)

D. Pump
 Aquaculture system often uses several types of pump. (HP: Horse Power)
 Number of pump-1: ___ ; Pump-1 power:_______kW or HP; Usage time:______hours/day (week)
 Number of pump-2: ____ ; Pump-2 power:_______kW or HP; Usage time:______hours/day (week)
 Number of pump-3: ___ ; Pump-3 power:_______kW or HP; Usage time:______hours/day (week)
 Number of pump-4: ____ ; Pump-4 power:_______kW or HP; Usage time:______hours/day (week)
e. Air Conditioner
Number of conditioners: ___; Conditioner power: _______kW; Usage time: _____ hours/day (week)

f. Heating (source of heating: natural gas): ___________Btu (CCF)/month (year) (CCF: 1000 feet³)

g. Energy consumption by other equipment
Please list other equipment and energy consumption in shrimp culture system

- Equipment A Name: _____; Number of equipment: ____; Usage time: _____ hours/ day (week)
 Power: _______kW(electricity) or Btu/hour or m³/hour (Natural Gas);
- Equipment B Name: _______; Number of equipment: ____; Usage time: _____ hours/ day (week)
 Power: _______kW(electricity) or Btu/hour or m³/hour (Natural Gas);
- Equipment C Name: _______; Number of equipment: ____; Usage time: _____ hours/ day (week)
 Power: _______kW(electricity) or Btu/hour or m³/hour (Natural Gas);
- Equipment D Name: _______; Number of equipment: ____; Usage time: _____ hours/ day (week)
 Power: _______kW(electricity) or Btu/hour or m³/hour (Natural Gas);

2.3.2 Total utility bill in shrimp culture system (ideally you will complete both 2.3.1 and 2.3.2)

a. Electricity: _______ kWh/month or year

b. Heating: _______ Btu/ month or year or Natural Gas: _______ m³/month or year

c. Diesel: _______ gallons or L/month or year

d. List any other type of energy consumption

- Energy 1 (i.e. solar, hydropower, wind): _______
 Consumption Quantity per year or month: ______________/year or month
- Energy 2 (i.e. solar, hydropower, wind): _______
 Consumption Quantity per year or month: ______________/year or month

3. Recirculating Water Treatment System (WTS)
Please write a paragraph and sketch a process flow diagram to describe your water treatment system. In the description and flow diagram, please indicate basic information and significant features/parameters about the water treatment system. The following questions may give you some guidance.

- What materials (i.e. chemicals, microorganisms) and method (i.e. biofilter, bio-ball) are used to treat the water; How to maintain the treatment system (i.e. replace oyster shell, clean and refill bio-balls);
- How to treat the wastes from system (i.e. used biofilter, sludge);
- Number of water treatment tanks: _________; size of each tank: _______ m³ (feet³)
- Land cover of water treatment system (exclude offices): _________ acres (feet²)

Description of water treatment system:
Please sketch a process flow diagram of the Water Treatment System

3.1 Biofilter Media
Composition of biofilter media used in the water treatment system:

a. Commercial biofilter media

☐ Bio-deck or bio-strata: brand_________________________; Price_______$/ feet³ (m³)
 The size of biofilter media used in water treatment system_______feet³ or m³
 How many times is one bio-deck reused (including the first time)?_______
 How often do you replace used biofilter media? ________times/ year (month)

☐ Bio-ball: brand______________________________; Price______$/ball
 How many bio-balls are used in water treatment system? ________;
 Size of one bio-ball: _______fluid ounce (ml)/ball;
 How many times is one bio-ball reused (including the first time)?_______
 How often do you replace used biofilter media? ________times/ year (month)

☐ Bio-fill: brand______________________________; Price______$/ feet³ (m³)
 The size of bio-fill used in water treatment system_______feet³ or m³
 How many times is one bio-fill reused (including the first time)?_______
 How often do you replace used biofilter media? ________times/ year (month)

☐ Bio-barrels: brand______________________________; Price______$/ barrel
 How many bio-barrels used in water treatment system? ______;
 size of one barrel: _______fluid ounce (ml);
 How many times is one bio-barrel reused (including the first time)?_______
 How often do you replace used biofilter media? ________times/ year (month)

☐ Open-cell foam: brand______________________________; Price______$/ feet³ (m³)
 The size of foam used in water treatment system:_______feet³ or m³
 How many times is one foam reused (including the first time)?_______
How often do you replace used biofilter media? ___________times/ year (month)

☐ Matala mat: brand ________________________; Price ________$/ feet³ (m³)
The size of mat used in water treatment system: ________feet³ or m³
How many times is one mat reused (including the first time)? __________
How often do you replace used biofilter media? ___________times/ year

Other commercial media (i.e. bio-glass, biocord, biofilter media bag):
☐ Brand ________________________; Price ________$/ feet³ (m³)
The size of biofilter media used in water treatment system: ________feet³ or m³
How many times is one biofilter media reused (including the first time)? __________
How often do you replace used biofilter media? ___________times/ year

☐ Brand ________________________; Price ________$/each
How many biofilter media are used in water treatment system? __________;
size: ______ gallon (m³)/each;
How many times is reused (including the first time)? __________
How often do you replace used biofilter media? ___________times/ year (month)

b. Home-made biofilter media
Clinker: Price ________$/ feet³ (m³)
How much media is used in water treatment system? ________feet³ or m³;
How many times is media reused (including the first time)? __________
How often do you replace used media? ___________times/ year

Gravel: Price ________$/ feet³ (m³)
How much media is used in water treatment system? ________feet³ or m³;
How many times is media reused (including the first time)? __________
How often do you replace used media? ___________times/ year

Sand: Price ________$/ feet³ (m³)
How much media is used in water treatment system? ________feet³ or m³;
How many times is media reused (including the first time)? __________
How often do you replace used media? ___________times/ year

Activated carbon: Price ________$/ feet³ (m³)
How much media is used in water treatment system? ________feet³ or m³;
How many times is media reused (including the first time)? __________
How often do you replace used media? ___________times/ year

3.2 Other material used to treat water:
Ozone: ________m³ (gallon)/ cycle (year); Price: ________$/ m³ (gallon)
Oyster shell: ________lb (kg)/cycle (year); Price: ________$/lb (kg)
How many times is shell reused (including the first time)? __________
How often do you replace used material? ___________times/ year
Chlorine ___________ lb (kg)/cycle (year); Price: ____________$/lb (kg)
Formalin ___________ gallon (L)/cycle (year); Price: ____________$/ L(gallon)
Lime ___________ lb (kg)/cycle (year); Price: ____________$/lb (kg)
BKC (Benzakonium chloride):_________ gallon (L)/cycle (year); Price: ________$/ L(gallon)
Other material a: name__________; _____ lb (gallon)/cycle (year); Price: _____$/ lb(gallon)
Other material b: name__________; _____ lb (gallon)/cycle (year); Price: _____$/ lb(gallon)

3.3 Wastes from Water Treatment System
a. Biomass (waste from biofilter media)
 Weight: _______lb (kg)/cycle(year); treatment: □ Landfill □ Incineration □ Other: ______
b. Solid sludge
 Weight: _______lb/kg/cycle/year; treatment: □ Landfill □ Incineration □ Other: ______
c. Other waste name: _______________________
 Weight: _______ lb/kg/cycle/year; treatment: □ Landfill □ Incineration □ Other: ______

3.4 Energy Consumption in Water Treatment System (exclude offices)
3.4.1 Itemized energy consumption (if data is not available, please complete 3.4.2. Ideally you could complete both)
a. Oxygen supplement equipment (HP: Horse Power)
 □ Aeration equipment (i.e. floating paddlewheel, submersible aerator): ______________
 Number of equipment: _______; power: _______kW or HP; Usage time: _______hours/day (week)

 □ Oxygen generator
 Number of equipment: _______; power: _______kW or HP; Usage time: _______hours/day (week)
 □ Other oxygen supplement equipment _______________________
 Number of equipment: _______; power: _______kW or HP; Usage time: _______hours/day (week)
b. Ozone generator
 Number of ozone generator: ____; power: _______kW or HP; Usage time: _______hours/day (week)
c. Lighting
 There are several types of lights with different power and usage time.
 Number of light-1: _______; Bulb wattage: _______W or HP; Usage time: _____ hours/day (week)
 Number of light-2: _______; Bulb wattage: _______W or HP; Usage time: _____ hours/day (week)
 Number of light-3: _______; Bulb wattage: _______W or HP; Usage time: _____ hours/day (week)
d. Pump
 Water treatment system often uses several types of pump:
 Number of pump-1: ___; Pump-1 power: _______kW or HP; Usage time: _______hours/day (week)
 Number of pump-2: ___; Pump-2 power: _______kW or HP; Usage time: _______hours/day (week)
 Number of pump-3: ___; Pump-3 power: _______kW or HP; Usage time: _______hours/day (week)
 Number of pump-4: ___; Pump-4 power: _______kW or HP; Usage time: _______hours/day (week)
e. Air Conditioner
 Number of conditioners: ___; Conditioner power: _______kW; Usage time: _______hours/day (week)
f. Heating (source of heating: natural gas): _____________ Btu (CCF)/month (year)
g. Energy consumption for other equipment
 Please list other equipment and energy consumption in shrimp culture system
Equipment A Name: ___________; Number of equipment: __; Usage time: ____ hours/day (week)
Power: ______ kW or HP (electricity) or Btu/hour or CCF/hour (Natural Gas);

Equipment B Name: ___________; Number of equipment: __; Usage time: ____ hours/day (week)
Power: ______ kW or HP (electricity) or Btu/hour or CCF/hour (Natural Gas);

Equipment C Name: ___________; Number of equipment: __; Usage time: ____ hours/day (week)
Power: ______ kW or HP (electricity) or Btu/hour or CCF/hour (Natural Gas);

Equipment D Name: ___________; Number of equipment: __; Usage time: ____ hours/day (week)
Power: ______ kW or HP (electricity) or Btu/hour or CCF/hour (Natural Gas);

3.4.2 Total utility bill in water treatment system
You could get the data for 3.4.2 from monthly or annual bills from your energy supplier. We hope you will complete both 3.4.1 and 3.4.2.

a. Electricity: ______ kWh/month or year
b. Natural Gas (propane): ______ m³ (CCF)/month (year)
c. Diesel: ______ gallons (L)/month (year)
d. list any other type of energy

Energy 1 (i.e. solar, hydropower, wind): ______
Consumption Quantity per year or month: _______________/year or month

Energy 2 (i.e. solar, hydropower, wind): ______
Consumption Quantity per year or month: _______________/year or month

B. Pre-Farming: Hatchery (post-larvae source)
Name of hatchery: __
Location (City/State/Zip code): ___
Transportation from hatchery to shrimp farming system:

Vehicle Type:
☐ Truck w/o Refrigerator ☐ Truck w/ Refrigerator ☐ Other vehicle: ____________
Vehicle Load: _______ lb (kg) post-larvae/vehicle

Would you like us to put your hatchery name in acknowledge of this research?
☐ Yes ☐ No

Would you like to provide more information about the hatchery if future research needed?
☐ Yes ☐ No

C. Post-Farming
The shrimp produced by farm: ☐ has commercial market ☐ is sold by shrimp farm directly
If the shrimp product has commercial market, please answer the following questions about shrimp processing/storage and wholesaler/retailer:

1. Processing & Storage

Shrimp processing plant location (City/State/Zip code): __________________________
Product selling unit: _______ lb (kg) shrimp/selling unit
What process is conducted on the shrimp?
☐ shelling ☐ heading ☐ deveining ☐ Other process (i.e. tail removal): _______________

Waste:
Waste percentage per shrimp: _______% waste per shrimp
Waste handling (i.e. municipal disposal): _____________

Transportation from shrimp farming system to shrimp processing plant:
 Vehicle type:
 □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle

Product freezing:
 If the product is not frozen in processing plant, please provide transportation information from
 processing plant to freezing plant
 Shrimp freezing plant location (City/State/Zip code): __________________________
 Vehicle type: □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle

2. Wholesaler & Retailer

2.1 Wholesaler and Transportation from Processing/Freezing Plant to Wholesaler
 □ Wholesaler 1 location (City/State/Zip code): __________________________
 Vehicle type:
 □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle
 □ Wholesaler 2 location (City/State/Zip code): __________________________
 Vehicle type:
 □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle
 □ Wholesaler 3 location (City/State/Zip code): __________________________
 Vehicle type:
 □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle
 □ Wholesaler 4 location (City/State/Zip code): __________________________
 Vehicle type:
 □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle

2.2 Retailer (i.e. supermarket) and Transportation from Wholesaler to Retailer
 □ Retailer location 1 (City/State/Zip code): __________________________
 Vehicle type: □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle

 □ Retailer location 2 (City/State/Zip code): __________________________
 Vehicle type: □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle

 □ Retailer location 3 (City/State/Zip code): __________________________
 Vehicle type: □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
 Vehicle Load: ________ lb (kg) shrimp /vehicle or _______selling unit/vehicle
Retailer location 4 (City/State/Zip code): __________________________
Vehicle type: □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
Vehicle Load: _________ lb (kg) shrimp /vehicle or _______ selling unit/vehicle

Retailer location 5 (City/State/Zip code): __________________________
Vehicle type: □ Airplane □ Truck w/o Refrigerator □ Truck w/ Refrigerator □ Other_______
Vehicle Load: _________ lb (kg) shrimp /vehicle or _______ selling unit/vehicle

D. Total Cost of Indoor Recirculating Shrimp Farm System

Regarding the above questions about the material prices, if individual material’s price is not available, please complete the following table. Ideally, we hope you provide both the individual material price and annual category cost, so that we can compare these two set of data.

In the following table, you need to provide category cost in shrimp culture system and water treatment system. You may find such data from annual accounting summary of purchasing material.

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Shrimp Culture System (SCS)</th>
<th>Water Treatment System (WTS)</th>
<th>Whole Recirculating System (SCS+WTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Investment</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Material/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Water/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Heating/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Electricity/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Waste Disposal/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Transportation/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Maintenance &Repair/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
<tr>
<td>Labor/year</td>
<td>/year</td>
<td>/year</td>
<td>/year</td>
</tr>
</tbody>
</table>

Explanation of cost category:

1. Initial investment cost or one time start-up costs includes Land Acquisition, Site Investigation, Design Services, Construction, Equipment and Technology

2. Annual Operation Cost category includes the following items:
 a. material cost (exclude water): cost of all the materials used to culture shrimp and treat water, i.e. post-larva, shrimp feed, water treatment chemicals, biofilter media,
 b. water cost: the freshwater and saltwater used in shrimp culture system and water treatment system
 c. energy cost: heating and electricity cost in Shrimp Culture System and Water Treatment System
 d. waste disposal cost: the cost to handle the waste from shrimp culture system (i.e. biomass) and water treatment system (i.e. biomass and sludge)
 e. transportation cost: fuel cost to transport materials and water from material suppliers to farm; it could also include the fuel cost to transport shrimp product from farm to processing plant. Please indicate what transportation is included in the transportation cost you listed in the above table:

4. Labor Cost: employee cost

E. Confidential Issues

Among the above information/data, if there is any information/data you do not want to show in the future published document, please indicate here.

Thanks for your help!
Appendix 2 Detailed calculation processes for the design of a commercial-scale recirculating aquaculture system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
<th>Calculation Formula</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Load</td>
<td>2,000 kg/day</td>
<td>kg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial DO concentration in influent water</td>
<td>5.0 mg/L</td>
<td>mg/L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Process Flow and Integration

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Flow Rate</th>
<th>Temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pre-treatment</td>
<td>200 gpd</td>
<td>70°F</td>
<td>10 psi</td>
</tr>
<tr>
<td>2</td>
<td>Aeration</td>
<td>150 gpd</td>
<td>80°F</td>
<td>15 psi</td>
</tr>
<tr>
<td>3</td>
<td>Sedimentation</td>
<td>100 gpd</td>
<td>90°F</td>
<td>20 psi</td>
</tr>
</tbody>
</table>

2.3 System Design

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate</td>
<td>200 gpd</td>
</tr>
<tr>
<td>Temperature</td>
<td>70°F</td>
</tr>
<tr>
<td>Pressure</td>
<td>10 psi</td>
</tr>
</tbody>
</table>

2.4 Process Efficiency

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>95%</td>
</tr>
</tbody>
</table>

2.5 System Maintenance

<table>
<thead>
<tr>
<th>Task</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check pump</td>
<td>Weekly</td>
</tr>
<tr>
<td>Clean filter</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

2.6 System Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Target Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>25 mg/L</td>
</tr>
<tr>
<td>BOD</td>
<td>10 mg/L</td>
</tr>
</tbody>
</table>

2.7 System Optimization

<table>
<thead>
<tr>
<th>Optimization Strategy</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase aeration</td>
<td>Increased oxygen transfer</td>
</tr>
<tr>
<td>Improve filter media</td>
<td>Longer filter life</td>
</tr>
</tbody>
</table>

References

Appendix 3 Detailed calculation processes of broodstock consumption

I assumed one female broodstock produced 100,000 eggs each time spawning occurred, which was 4 times during the organism’s life cycle. I also assumed 85% of broodstock would spawn and 60% of the eggs would survive. So one female broodstock produced 100,000 eggs/broodstock/time*4 times*85%*60% = 204,000 eggs or 204,000 PL, which meant 0.0049 female broodstock was needed for 1000 PL production. Since the ratio of female broodstock to male broodstock was assumed to be 2:1, total number of broodstock needed for 1000 PL production was 0.0049/2*3 = 0.0074. The following spreadsheet presents the parameters used in this calculation.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>eggs/time/female broodstock</td>
</tr>
<tr>
<td>4</td>
<td>times</td>
</tr>
<tr>
<td>400,000</td>
<td>eggs/female broodstock</td>
</tr>
<tr>
<td>85%</td>
<td>(female broodstock spawning rate)</td>
</tr>
<tr>
<td>60%</td>
<td>(egg survival rate)</td>
</tr>
<tr>
<td>204,000</td>
<td>eggs/female broodstock</td>
</tr>
<tr>
<td>204,000</td>
<td>PL/female broodstock</td>
</tr>
<tr>
<td>4.9E-06</td>
<td>female broodstock/PL</td>
</tr>
<tr>
<td>0.0049</td>
<td>female broodstock/1000PL</td>
</tr>
<tr>
<td>2</td>
<td>female:male (broodstock)</td>
</tr>
<tr>
<td>0.0074</td>
<td>broodstock/1000PL</td>
</tr>
</tbody>
</table>

Appendix 4 Energy intensities of constructional materials

<table>
<thead>
<tr>
<th>Energy Intensity</th>
<th>Amount (MJ LHV/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPE</td>
<td>80</td>
</tr>
<tr>
<td>sawn timber</td>
<td>13,856</td>
</tr>
<tr>
<td>plywood</td>
<td>32,967</td>
</tr>
<tr>
<td>concrete</td>
<td>2</td>
</tr>
<tr>
<td>HDPE</td>
<td>74</td>
</tr>
<tr>
<td>PVC</td>
<td>67</td>
</tr>
</tbody>
</table>
Appendix 5: Impact intensities from SimaPro database (Eco-indicator 95)

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Unit</th>
<th>Fishmeal (kg)</th>
<th>Electricity (MJ)</th>
<th>Salt (kg)</th>
<th>Truck (tkm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse</td>
<td>kg CO₂</td>
<td>0.711937</td>
<td>0.200458</td>
<td>0.179206</td>
<td>0.208967</td>
</tr>
<tr>
<td>Ozone layer</td>
<td>kg CFC11</td>
<td>1.38E-06</td>
<td>4.21E-09</td>
<td>5.76E-08</td>
<td>1.69E-10</td>
</tr>
<tr>
<td>Acidification</td>
<td>kg SO₂</td>
<td>0.004304</td>
<td>0.002027</td>
<td>0.00216</td>
<td>0.002358</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>kg PO₄</td>
<td>-0.00671</td>
<td>9.31E-05</td>
<td>0.000198</td>
<td>0.000343</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>kg Pb</td>
<td>2.74E-06</td>
<td>5.5E-07</td>
<td>4.51E-07</td>
<td>9.86E-08</td>
</tr>
<tr>
<td>Carcinogens</td>
<td>kg B(a)P</td>
<td>3.52E-08</td>
<td>5.29E-10</td>
<td>1.1E-09</td>
<td>9.39E-11</td>
</tr>
<tr>
<td>Pesticides</td>
<td>kg act.subst</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Summer smog</td>
<td>kg C₂H₄</td>
<td>0.000702</td>
<td>6.06E-05</td>
<td>0.001709</td>
<td>0.00038</td>
</tr>
<tr>
<td>Winter smog</td>
<td>kg SPM</td>
<td>0.002204</td>
<td>0.001555</td>
<td>0.0011</td>
<td>0.001079</td>
</tr>
<tr>
<td>Energy resources</td>
<td>MJ LHV</td>
<td>15.91207</td>
<td>3.431506</td>
<td>2.81617</td>
<td>2.883681</td>
</tr>
<tr>
<td>Solid waste</td>
<td>kg</td>
<td>0</td>
<td>0.033985</td>
<td>0.03506</td>
<td>0.001095</td>
</tr>
</tbody>
</table>

Appendix 6: Normalization values for Eco-indicator 95 (Goedkoop, 1995)

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Unit</th>
<th>Per head of the population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse</td>
<td>kg CO₂</td>
<td>1.31E+04</td>
</tr>
<tr>
<td>Ozone layer</td>
<td>kg CFC-11</td>
<td>9.26E-01</td>
</tr>
<tr>
<td>Acidification</td>
<td>kg SO₂</td>
<td>1.13E+02</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>kg PO₄</td>
<td>3.82E+01</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>kg Pb</td>
<td>5.43E-02</td>
</tr>
<tr>
<td>Carcinogens</td>
<td>kg B(a)P</td>
<td>1.09E-02</td>
</tr>
<tr>
<td>Pesticides</td>
<td>kg act.subst</td>
<td>9.66E-01</td>
</tr>
<tr>
<td>Summer smog</td>
<td>kg C₂H₄</td>
<td>1.79E+01</td>
</tr>
<tr>
<td>Winter smog</td>
<td>kg SPM</td>
<td>9.46E+01</td>
</tr>
<tr>
<td>Energy resources</td>
<td>MJ LHV</td>
<td>1.59E+05</td>
</tr>
<tr>
<td>Solid waste</td>
<td>kg</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Appendix 7 Distribution of transportation stage for (a) Transportation 1, (b) Transportation 2, (c) Transportation 3, (d) Transportation 4 and (e) Transportation 6 scenario analysis

a) from feed raw material suppliers to feed mill (Transportation 1)

- GWP
- AP
- EP
- HM
- WS
- EU

b) from feed mill to hatchery (Transportation 2)
c) from feed mill to farm (Transportation 3)

d) from hatchery to farm (Transportation 4)

e) from farm to consumer (Transportation 6)