Study: Greater Greenhouse Gas Reductions for Pickup Truck Electrification Than for Other Light-Duty Vehicles

Typography

Major automotive manufacturers are ramping up production of electric trucks as a key strategy to reduce the greenhouse gas emissions of their vehicles.

Major automotive manufacturers are ramping up production of electric trucks as a key strategy to reduce the greenhouse gas emissions of their vehicles.

Light-duty vehicles, including sedans, SUVs and pickup trucks, are currently responsible for 58% of U.S. transportation sector greenhouse gas emissions. Pickup trucks accounted for 14% of light-duty vehicle sales in the United States in 2020, and the market share of both pickups and SUVs has grown in recent years.

But what does pickup truck electrification mean for the decarbonization of the transportation industry?

University of Michigan and Ford Motor Co. researchers addressed this question in a new study and evaluated the savings in greenhouse gas emissions relative to gasoline-powered pickup trucks. The study was published online March 1 in the journal Environmental Research Letters.

“This is an important study to inform and encourage climate action. Our research clearly shows substantial greenhouse gas emission reductions that can be achieved from transitioning to electrified powertrains across all vehicle classes,” said study senior author Greg Keoleian, a professor at the U-M School for Environment and Sustainability and director of the Center for Sustainable Systems.

In the study, researchers conducted a cradle-to-grave assessment of the life cycle of pickup trucks and compared the implications of pickup truck electrification to those of sedan and SUV electrification.

Read more at: University of Michigan

Life cycle greenhouse gas emissions for each vehicle class and powertrain. Average lifetime emissions account for differences in grid emissions for electricity balancing areas and county-level differences in drive cycle and temperature effect on fuel economy. (Photo credit: From Woody et al. in Environmental Research Letters, 20220