Greenhouse Gases

The Greenhouse Effect

The greenhouse effect is a natural phenomenon that insulates the Earth from the cold of space. As incoming solar radiation is absorbed and re-emitted back from the Earth’s surface as infrared energy, greenhouse gases (GHGs) in the atmosphere prevent some of this heat from escaping into space, instead reflecting the energy back to further warm the surface. Anthropogenic (human-caused) GHG emissions are modifying the Earth's energy balance between incoming solar radiation and the heat released back into space, amplifying the greenhouse effect and resulting in climate change.

Greenhouse Gases

- There are ten primary GHGs; of these, water vapor (H₂O), carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) are naturally occurring. Perfluorocarbons (CF₆, C₂F₆), hydrofluorocarbons (CHF₃, CF₃CH₂F, CH₃CHF₂), and sulfur hexafluoride (SF₆) are only present in the atmosphere due to industrial processes.
- Water vapor is the most abundant and dominant GHG in the atmosphere. Its concentration depends on temperature and other meteorological conditions and not directly upon human activities.
- CO₂ is the primary anthropogenic greenhouse gas, accounting for 78% of the human contribution to the greenhouse effect in 2010.
- Global Warming Potentials (GWPs) indicate the relative effectiveness of GHGs in trapping the Earth’s heat over a certain time horizon. CO₂ is used as the reference gas and has a GWP of one. For example, the 100-year GWP of SF₆ is 23,500, indicating that its radiative effect on a mass basis is 23,500 times that of CO₂ over the same time horizon.
- GHG emissions are typically discussed in terms of mass of carbon dioxide equivalents (CO₂e), which are calculated by multiplying the mass of emissions by the GWP of the gas.

Atmospheric Greenhouse Gas Emissions

- Since 1750, atmospheric concentrations of CO₂, CH₄, and N₂O increased by 149%, 262%, and 123%, respectively, to levels that are unprecedented in the past 800,000 years.
- Before the Industrial Revolution, the concentration of CO₂ remained around 280 parts per million (ppm) by volume. In March 2022, the global monthly average concentration increased to 418.28 ppm, which is about 2.8 ppm higher than in 2021.

Sources of Greenhouse Gas Emissions

- Anthropogenic CO₂ is emitted primarily from fossil fuel combustion. Iron and steel production, cement production and petrochemical production are other significant sources of CO₂ emissions.
- The U.S. oil and gas industry emits 2.3% of its gross gas production annually, equivalent to 13 million metric tons of methane—nearly 60 percent higher than the U.S. Environmental Protection Agency (EPA) estimates.
- CH₄ and N₂O are emitted from both natural and anthropogenic sources. Domestic livestock, landfills, and natural gas systems are the primary anthropogenic sources of CH₄. Agricultural soil management (fertilizer) contributes 74% of anthropogenic N₂O. Other significant sources include mobile and stationary combustion and livestock.
- Hydrofluorocarbons (HFCs) are the fastest growing category of GHG and are used in refrigeration, cooling, and as solvents in place of ozone-depleting chlorofluorocarbons (CFCs).

Emissions and Trends

Global

- In 2019, total global anthropogenic GHG emissions were 51.7 Gt CO₂e. Since 1990, annual anthropogenic GHG emissions increased by 57%. GHG emissions increased by 0.57 Gt CO₂e in 2019. Emissions averaged an increase of 0.4 Gt CO₂e per year from 1970–2000. Emissions from fossil fuel combustion account for a majority (73%) of global anthropogenic GHG emissions. In 2019, global emissions of CO₂ from energy use totaled 35.5 Gt CO₂.
- From 2000 to 2019, global CO₂ emissions from energy use increased 47%.
- Since 2005, China has been the world’s largest source of anthropogenic CO₂ emissions, surpassing the U.S.
United States

- The U.S. represents less than 5% of the world’s total population, but was responsible for 14% of total anthropogenic GHG emissions in 2020.6
- GHG emission in 2020 were 7.3% lower than in 1990, with an average annual growth rate of -0.2%.5
- Fossil fuel combustion is the largest source of U.S. GHGs, currently accounting for 73% of total emissions. Since 1990, fossil fuel consumption has decreased at a rate of 0.3%. However, both GHG emissions and fossil fuel consumption have decreased since 2005 while GDP kept growing.5
- CO₂ emissions accounted for 78.8% of total U.S. GWP-weighted emissions (CO₂e) in 2020 and were 8% lower than in 1990.5
- The electric power industry produces 25% of total U.S. GHG emissions. Emissions from this sector have decreased 21% since 1990.5
- Transportation is the largest contributor of U.S. GHG emissions, responsible for 27% of total emissions in 2020, (7% higher than in 1990). Passenger cars and light-duty trucks accounted for 605 and 298 million metric tons CO₂e, respectively, together making up 55% of U.S. transportation emissions and 15% of total U.S. emissions.5
- Urban sprawl, increased travel demand, population growth, and low fuel prices drive the growth of transportation GHG emissions.5
- Land use and forestry in the U.S. sequester a portion of CO₂ in growing plants and trees, removing 11% of the GHGs emitted by the U.S. in 2020.5
- As a result of 2008 federal legislation, sources that emit over 25,000 metric tons CO₂e in the U.S. are required to report emissions to the U.S. EPA.34

Emissions by Activity

Use of a 100W light bulb for 10 hours: 0.87 lbs CO₂e.3

1 mile driven in a car (30.7 mpg): 0.63 lbs CO₂.3

1 mile driven in a light-duty vehicle (22.6 mpg): 0.88 lbs CO₂e.3

Future Scenarios and Targets

- Stabilizing global temperatures and limiting the effects of climate change require more than just slowing the growth rate of emissions; they require absolute emissions reduction to net-zero or net-negative levels.77
- Based on current trends, global energy-related CO₂ emissions are anticipated to increase by 25% from 2020 to 2050.88
- Non-OECD countries’ CO₂ emissions are expected to increase by 1.0% annually, while OECD countries’ emissions grew by 0.2% annually. Despite this difference, OECD countries will still have per capita emissions 2.2 times higher than non-OECD countries in 2050.88
- Under the Kyoto Protocol, developed countries agreed to reduce their GHG emissions on average below 1990 levels by 2012. When the first commitment period ended, the Protocol was amended for a second commitment period with a new overall reduction goal of 18% below 1990 levels by 2020.79
- In 2015, UNFCCC parties came to an agreement in Paris with a goal to limit global temperature rise to less than 1.5°C above pre-industrial levels, in order to avoid the worst effects of climate change.20
- Global CO₂ emissions would need to decline 45% from 2010 levels by 2030 and reach net-zero by around 2050 to avoid temperature rise beyond 1.5°C.77

1 Teragram (Tg) = 1000 Giga grams (Gg) = 1 million metric tons = 0.001 Giga tons (Gt) = 2.2 billion pounds (lbs)

9. Center for Climate and Energy Solutions (2021) "Short-lived Climate Pollutants."
17. IPCC (2014) Special Report: Global Warming of 1.5°C.
19. UN Framework Convention on Climate Change (UNFCCC) (2021) "What is the Kyoto Protocol?" Agreement.
20. UNFCCC (2020) "Paris Agreement."