

2,689 ft²

Residential Buildings

Patterns of Use

Although proven climate-specific, resource-efficient house design strategies exist, per capita material use and energy consumption in the residential sector continue to increase. From 2000 to 2010, the U.S. population increased by 9.7%, while the number of housing units increased by 13.6% and urban land area increased by 15%. The following trends demonstrate the unsustainable nature of the residential building sector.

1970

1,500 ft²

Size and Occupancy

- Increased average size of a new U.S. single-family house: 2,3,4
 - 1950: 983 sq ft
 - 1970: 1,500 sq ft
 - 2000: 2,265 sq ft
 - 2015: 2,689 sq ft, a 174% increase from 1950.
- Increased average area per person in a new U.S. single-family house:^{2,3,5}
 - 1950: 292 sq ft per person
 - 1970: 478 sq ft per person
 - 2000: 840 sq ft per person
 - 2015: 1,059 sq ft per person, a 263% increase from 1950.
- Decreased average number of occupants per U.S. household:2,5
 - 1950: 3.37 occupants
 - 1970: 3.14 occupants
 - 2000: 2.62 occupants
 - 2015: 2.54 occupants, a 25% decrease from 1950.
- A majority of Americans live in single-family houses. In 2013, 64% of the 116 million U.S. households were single family.⁶
- In 1950, 9% of housing units were occupied by only one person. By 2015, this value had increased to 28%.
- Americans spend, on average, 90% of their time indoors.8

Energy Use

- A 1998 study by the Center for Sustainable Systems of a single-family house in Michigan shows an annual energy consumption of 1.3 GJ per square meter.¹⁰
- A similar study of 3 houses in Sweden built in the 1990s shows annual energy consumption of 0.49–0.56 GJ per square meter, less than half the energy consumed by the Michigan house.¹¹
- Between 1990 and 2014, total residential GHG emissions increased 20%, accounting for 17% of total U.S. GHG emissions in 2014.¹²
- The residential sector accounted for 22% of total primary energy consumption in the U.S. in 2015.¹³

Material Use

- The average U.S. single-family home built in 2000 required 19 tons of concrete, 13,837 board-feet of lumber, and 3,061 square feet of insulation.¹⁴
- From 1975 to 2000, the consumption of clay by the U.S. housing industry more than tripled, due to its use in tiles and bathroom fixtures. 15
- In 2012, around 24% of all wood products consumed in the U.S. were used for residential construction.
- Approximately 10 million tons of debris was generated in the construction of new residential buildings in 2003—4.4 pounds per square foot.

Life Cycle Impacts

- In 1998, the Center for Sustainable Systems conducted an inventory of the life cycle energy consumption from the materials manufacturing, construction, and operation of a 2,450 square foot, single-family house built in Ann Arbor, Michigan. The following energy efficiency strategies were then modeled to quantify the resulting life-cycle energy savings (note: insulation materials are measured in thermal resistance, R-values; the higher the R-value, the more effective the insulation): 10,18
 - Wall and ceiling insulation increased from R-15 to R-35 and R-23 to R-49, respectively; building infiltration (leakage) reduced by half.
 - Concrete basement walls replaced with wood; basement thermal insulation increased from R-12 to R-39.
 - Double-glazed windows upgraded to include low-e treatment and argon fill.

Average Size of a New U.S. Single-Family House^{3,4}

U.S. Single-Person Households^{5,7}

2015

Average U.S. Residential Energy Consumption, 20159

- Energy-efficient appliances; electric stove & dryer switched to natural gas.
- Energy-efficient fluorescent lighting.
- Building-integrated shading (overhangs) created on south-facing windows.
- Hot-water heat recovery installed.
- Air-to-air heat recovery used with a ventilation system.
- Glass fiber thermal insulation replaced with recycled cellulose.
- Roofing shingles made from recycled materials (wood/plastic).
- A 63% life-cycle energy reduction was achieved through the above measures, using readily available technology. Despite the additional material requirements, the total embodied energy was reduced by about 4%.¹⁰
- Life cycle greenhouse gas emissions were reduced from 1,013 to 374 metric tons CO₃-equivalent over the 50-year life of the house.¹⁰
- Only 10% of the life cycle energy consumption was attributed to construction and maintenance; 90% occurred during operation.¹⁰
- Top contributors to primary energy consumption were polyamide for carpet, concrete in foundation, asphalt roofing shingles, and PVC for siding, window frames, and pipes.¹⁰
- Installing a high-efficiency HVAC system and cellulose insulation ranked as the most effective strategies for reducing annual energy costs.¹⁰
- Many of the materials in the case study house are currently recyclable; however, the U.S. average recycling rate of building materials from demolition and construction is only 20-30%.^{10,19}

Solutions and Sustainable Alternatives

Reduce Operational Demand

Energy and water consumption during the life of a building contribute more to its environmental impact than do building materials. The following suggestions can significantly reduce operational energy demand:

- Space heating and cooling make up 48% of residential energy consumption. Passive heating (e.g., passive solar, waste heat recovery from disposed hot water) and passive cooling (e.g., night-purge ventilation, shading) can help reduce household energy usage.¹⁸
- By adding ceiling fans, air conditioning can be comfortably set about 4°F higher.²⁰
- Adequate insulation can reduce heating and cooling costs. R-value needs differ based on location, building design, and heating methods.²¹
- Maximize natural lighting with skylights and south facing windows.²²
- · Consider passive sanitary services, such as composting toilet, rainwater use for toilets, and greywater for gardening.
- Water heating accounts for 18% of residential energy consumption.¹⁸ A drain water heat recovery system can save energy by capturing the heat
 from waste hot water and reusing it to preheat cold water.²³
- Install low-flow water fixtures (less than 2.5 gallons-per-minute of flow) to save both water and energy.²⁴
- Large appliances and lighting account, on average, for 25% of household energy costs. Purchasing energy efficient appliances and light bulbs
 can help reduce these costs.²⁵
- Through the Taxpayer Relief Act, Congress offers tax credits up to \$500 per 0.5 kW of power are available through the end of 2016 for geothermal heat pumps, small wind turbines, and solar energy systems.²⁶

Select Durable and Renewable Materials

Durable building materials may have greater upfront cost, but long-term savings and reduced environmental impact are achieved by avoiding replacement. Renewable building materials also offer potential environmental advantages.

- Durables to consider: cork or hardwood vs. carpet, standing-seam roofing vs. asphalt shingles.
- Renewables to consider: cork, linoleum, wool carpet, certified wood and plywood, strawboard, cellulose insulation, straw-bale.
- Substituting asphalt shingle roofing with recycled plastic/wood fiber shingles can reduce embodied energy by 98% over 50 years.
- U.S. Census Bureau (2012) United States Summary: 2010 Population and Housing United Counties. 2010 Census of Population and Housing.
- Wilson, A. and J. Boehland (2005) Small is Beautiful, U.S. House Size, Resource Use, and the Environment. Journal of Industrial Ecology, 9(1-2): 277-287.
- National Association of Home Builders (2007) "Housing Facts, Figures and Trends and Single-Family Square Footage By Location."
- 4. U.S. Census Bureau (2015) 2015 Quarterly Starts and Completions by Purpose and Design.
- 5. U.S. Census Bureau (2016) America's Families and Living Arrangements: 2015.
- 6. U.S. Census Bureau (2015) "American Housing Survey 2013."
- 7. U.S. Census Bureau (2004) "Historical Census of Housing Tables: Living Alone."
- Wilson, S. (2004) "Design for Health: Summit for Massachusetts Health Care Decision Makers." Presentation.
- U.S. Department of Energy (DOE), Energy Information Administration (EIA) (2015) Annual Energy Outlook 2015.
- 10. Blanchard, S. and P. Reppe (1998) Life Cycle Analysis of a Residential Home in Michigan. CSS98-05.
- Adalberth, K. (1997) Energy use during the Life Cycle of Single-Unit Dwellings: Examples. Building and Environment, 32(4): 321-329.
- U.S. Environmental Protection Agency (EPA) (2016) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014.
- 13. U.S. DOE, EIA (2016) Monthly Energy Review May 2016.

Renewable Materials Used in the Samuel T. Dana Building²⁷ University of Michigan, Ann Arbor, Michigan

Single-Family House in Ann Arbor, Michigan¹⁰

(Left to right: biocomposite countertops, 100% wool carpet, bamboo flooring)

- U.S. EPA (2013) Analysis of the Life Cycle Impacts and Potential for Avoided Impacts Associated with Single-Family Homes.
- World Resources Institute (2008) Material Flows in the United States: A Physical Accounting of the U.S. Industrial Economy.
- APA-The Engineered Wood Association (2015) Wood Products and Other Building Materials Used in New Residential Construction in the United States.
- 17. U.S. EPA (2009) Estimating 2003 Building-Related Construction and Demolition Materials Amounts.
- 18. U.S. EIA (2009) "Residential Energy Consumption Survey."
- U.S. EPA (1998) Characterization of Building-Related Construction and Demolition Debris in the United States.
- 20. U.S. DOE, Energy Efficiency and Renewable Energy (EERE) (2001) Cooling Your Home with Fans and Ventilation.
- 21. Federal Trade Commission (2009) "Home Insulation: It's All About the R-Value."
- 22. U.S. DOE (2012) "Daylighting."
- 23. U.S. DOE (2012) "Drain Water Heat Recovery."
- 24. U.S. DOE (2012) "Reduce Hot Water Use for Energy Savings."
- 25. Energy Star (2013) "Where Does My Money Go?"
- U.S. DOE (2013) "What You Need to Know About the Extended Federal Tax Credits for Energy Efficiency."
- 27. Image courtesy of University of Michigan, School of Natural Resources and Environment.