

6th International Conference on

Life Cycle Assessment in the Agri-Food Sector Book of Abstracts

Towards a Sustainable Management of the Food Chain Zurich, Switzerland November 12–14, 2008

Organised by Agroscope Reckenholz-Tänikon Research Station ART

www.lcafood08.ch

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs FDEA Agroscope Reckenholz-Tänikon Research Station ART

Swiss Confederation

Objectives of the Meeting

Agriculture and the food sector are responsible for a large share of the environmental impacts and resource use caused by human activity. For certain environmental issues such as the conservation of biodiversity, agriculture is the key driver. For about 15 years now, the Life Cycle Assessment (LCA) method has successfully been used to analyse agricultural production systems and food chains. A variety of inventories, tools and methodical approaches for analysing different food chains have also been developed over this period.

The objectives of the meeting are:

- to show recent developments in terms of methodology, approaches, databases and tools;
- to present applications of the LCA methodology in new case studies or case studies showing new aspects in various food chains;
- to present successful examples of communication of LCA results to stakeholders and their use in decision making.

We are pleased to welcome you to the conference "LCA in the Agri-Food Sector 2008", the sixth conference in a series that started in 1996.

Scientific Committee

Gérard Gaillard	Agroscope ART, Zurich, Switzerland (Co-Chair)
Thomas Nemecek	Agroscope ART, Zurich, Switzerland (Co-Chair)
Claudine Basset-Mens	Cemagref, Montpellier, France
Imke de Boer	Wageningen University, Wageningen, The Netherlands
Tim Grant	Centre for Design, Melbourne, Australia
Kiyotada Hayashi	National Agricultural Research Center, Tsukuba, Japan
Stefanie Hellweg	Swiss Federal Institute of Technology ETH, Zurich, Switzerland
Niels Jungbluth	ESU-services Ltd., Uster, Switzerland
Llorenç Milà i Canals	Unilever, London, United Kingdom
Bruno Notarnicola	University of Bari, Bari, Italy
Rita Schenck	Institute for Environmental Research and Education, Vashon, USA
Ulf Sonesson	Swedish Institute for Food and Biotechnology, Gothenburg, Sweden
Hayo van der Werf	INRA, Rennes, France
Bo P. Weidema	20 LCA consultants, Hørsholm, Denmark

Organising Committee

Gérard Gaillard	Silvio Blaser	Matthias Müller
Martina Alig	Sylvia Brühlmann	Thomas Nemecek
Daniel Baumgartner	Ursus Kaufmann	Denise Tschamper
Atlant Bieri	Ursula Kläger	

Agroscope Reckenholz-Tänikon Research Station ART

Conference Organisers

Agroscope Reckenholz-Tänikon Resarch Station ARTReckenholzstrasse 191, CH-8046 Zürich, SwitzerlandEmail:lcafood08@art.admin.chConference website:www.lcafood08.chART website:www.art.admin.chPhone:+41 44 377 71 72Fax:+41 44 377 72 01

Life-cycle energy and greenhouse gas analysis of a large-scale vertically integrated organic dairy in the U.S.

<u>M. Heller</u>¹, S. Cashman, K. Dick, D. Przybylo, W. Walter, G. Keoleian Center for Sustainable Systems, School for Natural Resources and Environment University of Michigan, Ann Arbor, MI, USA ¹ mcheller@umich.edu

Keywords: Organic, milk, GHG, Life cycle assessment, carbon footprint

Agriculture is responsible for nearly seven percent of the total U.S. greenhouse gas emissions; over half of this is from livestock (USDA, 2004). The U.S. organic food sector has consistently grown between 15-20% annually over the past decade. Organic dairy in particular has grown by upwards of 25% in recent years (OTA, 2007). While such growth is in general lauded as an environmental success, there is a great need for systemic benchmarking of the environmental impact of organic agriculture in the U.S. in order to provide guidance for continual improvements in the sustainability of this rapidly growing sector.

This study is the first life cycle assessment (LCA) of a large-scale, vertically integrated organic dairy in the U.S. Aurora Organic Dairy (AOD) is a leading U.S. provider of private-label organic milk and butter, managing over 12,000 milking cows and processing over 84 million liters (22 million gallons) of milk annually. Data collected at AOD farms and processing facilities were used to build a LCA model for benchmarking the greenhouse gas (GHG) emissions and energy consumption across the entire milk production system, from organic feed production to transport of packaged milk. The analysis covers all aspects of milk production (see figure), from growing organic feed, to delivering packaged milk to customers (retail outlets). Overall GHG emissions were 1.7 kg CO₂ eq. per liter of packaged liquid milk. The major GHG contributors include enteric fermentation (28% of total) and feed production (23% of total). The energy consumption for the entire system was 17.3 MJ per liter of packaged liquid milk. Potential strategies for reducing the system GHG emissions are discussed. This energy and greenhouse gas analysis is phase one of a two phase project, to be followed by a thorough sustainability assessment including additional ecological indicators, as well as social and economic indicators.

References

United States Department of Agriculture (USDA) (2004) "U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2001," Technical Bulletin No. 1907. 163 pp., http://www.usda.gov/oce/global_change/gg_inventory.htm, accessed April 28, 2008.

Organic Trade Association (OTA) (2007) "2007 Manufacturer Survey Overview," http://www.ota.com/pics/documents/2007ExecutiveSummary.pdf, accessed April 15, 2008.

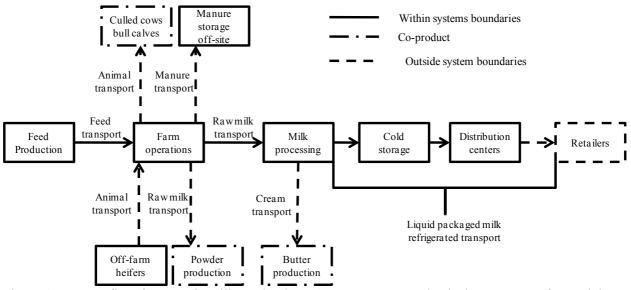


Figure 1: Process flow for organic milk production. Arrows represent physical movement of materials and boxes represent different phases of milk production. Processes accounted for in this study are shown in solid lines while processes not accounted for are shown in dashed lines. Processes (co-products) with upstream burdens allocated away from the liquid milk system are shown in dashed-dot lines.