Potential Changes in Greenhouse Gas Emissions from Refrigerated Supply Chain Introduction in a Developing Food System

Brent R. Heard* and Shelie A. Miller

Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, Michigan 48109, United States

ABSTRACT: Refrigeration transforms developing food systems, changing the dynamics of production and consumption. This study models the introduction of an integrated refrigerated supply chain, or "cold chain," into sub-Saharan Africa and estimates changes in preretail greenhouse gas (GHG) emissions if the cold chain develops similarly to North America or Europe. Refrigeration presents an important and understudied trade-off: the ability to reduce food losses and their associated environmental impacts, but increasing energy use and creating GHG emissions. It is estimated that postharvest emissions added from cold chain operation are larger than food loss emissions avoided, by 10% in the North American scenario and 2% in the European scenario. The cold chain also enables changes in agricultural production and diets. Connected agricultural production changes decrease emissions, while dietary shifts facilitated by refrigeration may increase emissions. These system-wide changes brought about by the cold chain may increase the embodied emissions of food supplied to retail by 10% or decrease them by 15%, depending on the scenario.

COLD CHAIN INTRODUCTION AND THE FOOD SUPPLY CHAIN

This study explores the inherent trade-off of reducing food losses and their associated embodied greenhouse gas (GHG) emissions by deploying refrigeration, a technology that increases GHG emissions through energy consumption and refrigerant emissions. This analysis first examines only the direct postharvest trade-offs between increased energy and refrigerant emissions compared to the GHG savings of reduced food loss. This study then takes a broader systems-level examination of the potential impacts of introduced refrigeration, including anticipated impacts on agricultural production with development and dietary shifts brought about by improved access to perishable foods.

An integrated refrigerated supply chain, or "cold chain," can provide benefits for community health, nutrition, and food security. Refrigeration increases access to perishable foods, extends the shelf life of food, and has the potential to reduce food losses. Access to refrigeration is associated with improved health outcomes, including reduced risk of foodborne illness and improved capacity to store antibiotics and vaccines. The cold chain has critical connections to the Sustainable Development Goals, with target 12.3 seeking a reduction in food loss and waste along the food supply chain, and Goal 2 seeking to improve food security and nutrition. The global cold chain market was valued at $203.14 billion USD in 2018 and is expected to grow 7.6% per year, driven by increased demand in emerging markets.

Despite these benefits, refrigeration is energy-intensive and often uses refrigerants with high global warming potentials. When accounting only for direct energy use and refrigerant leakage, refrigeration is responsible for approximately 1% of the world’s total carbon dioxide emissions, and can represent 3–3.5% of GHG emissions in developed economies such as the UK.

In addition to energy use and emissions, refrigeration facilitates increased consumption of more-perishable foods, which tend to be more environmentally intensive. Consumer demand for food determines the agricultural production systems required to provide the types and quantities of food demanded. Agricultural industrialization may not initially seem to be a result of the cold chain; however, particularly for perishable goods, cold storage enables more industrialized systems since it expands distribution capacity, facilitating larger production.

Food loss and waste is an environmental, economic, and social loss. Additionally, food losses that occur further along the supply chain are more carbon-intense due to

Received: September 20, 2018
Revised: December 5, 2018
Accepted: December 7, 2018
Published: December 19, 2018
Approximately one-third of all food produced for human consumption is lost or wasted, and reducing food losses and waste has been identified as a key goal in improving food security. The cold chain has been identified as a key means for reducing food loss and waste, providing savings in embodied GHG emissions. Therefore, it becomes crucial to first develop a better understanding of whether the emissions savings from reduced food loss are offset by increased emissions from the cold chain and determine potential improvements to reduce cold chain impacts while maintaining these societal benefits.

The cold chain is a transformative technology which influences, co-develops, and interacts with a number of food system properties ranging from consumer behavior to upstream production methods. The cold chain fundamentally changes markets and supply chains, necessitating consideration of not only direct, but also indirect and external factors associated with this technology when modeling its environmental impacts.

This study examines the extent to which the cold chain may increase or decrease net GHG emissions when introduced into a developing food system.

STUDY OVERVIEW

This study examines the extent to which the cold chain may increase or decrease net GHG emissions when introduced into a developing food system.

Academic study of the cold chain has been limited and fragmented, with few connections between the technical research on refrigeration technologies and the broader food systems literature, presenting notable research gaps. James and James present a valuable analysis of the cold chain’s relationship to climate change, detailing mechanisms through which these emissions could be reduced, but warning of potential emissions increases should a rise in ambient temperatures from climate change occur. Garnett discusses refrigeration from a food systems perspective in a comprehensive working paper, summarizing the literature on the environmental impacts of refrigeration systems, and also discussing how refrigeration may prompt dietary shifts and consumer behavior changes.

This study first examines a fundamental trade-off of refrigeration: the ability to reduce food losses which carry embodied emissions, but increasing energy use and GHG emissions to do so. This study assesses whether the cold chain adds more emissions per food type supplied to retail than it saves through avoided losses with its introduction. Once the direct trade-offs are evaluated, a broader system view is taken, first estimating changes in emissions required to supply each food type to retail due to improved efficiencies in agricultural production occurring with development, then estimating potential emissions changes from dietary shifts enabled by refrigeration.

Greenhouse gas emissions (in CO₂e) are estimated for one kg of food supplied to retail for seven food categories: cereals, roots and tubers, fruits, vegetables, meat, fish and seafood, and milk. Additional important impacts associated with agriculture, including blue water consumption, land use change, nutrient runoff, and biodiversity effects are not included due to a lack of data. The food supply chain (FSC) is defined as a linear model of mass flow with five stages in accordance with Gustavsson et al.

Figure 1. Visual representations of mass flows for food (F), loss rates (R), and losses (L) in the upstream food supply chain to supply 1 kg of food to retail. R values are loss rates in each FSC stage for fruits and vegetables for sub-Saharan Africa (top) and North America and Oceania (bottom) from Gustavsson et al. Each food type has unique food loss rates at each stage; the values for fruits and vegetables are shown here as an example. Emissions in this study are calculated for the preretail portion of the food supply chain (FSC) due to data constraints and the role of consumer behavior and retailing heterogeneity in the downstream FSC. Further description of the study boundary and these terms available in the Materials and Methods.
al.17 three of which occur upstream (prior to retail). This analysis defines food loss as edible food at one stage of the FSC that is not supplied to the next stage of the FSC, corresponding with common use in the literature.17,24 The boundary of this study is the upstream, preretail portion of the FSC. Therefore, total food loss reported throughout this analysis is edible food not successfully supplied to retail. The functional unit considered is 1 kg of food reflecting a representative diet comprised of the seven food types studied. A visual depiction of food mass in the model FSC is displayed in Figure 1.

The sub-Saharan African (SSA) food system is the baseline for this model. Sub-Saharan Africa is an ideal case to examine potential cold chain deployment as it has some of the highest upstream loss rates for food,17 and is characterized by a lack of current cold chain infrastructure. The United States was estimated to have 0.37 m3 of refrigerated storage per capita in 2014, compared to estimates of 0.015 m3 per capita in urban areas of South Africa in 2008, and estimates of 0.002 m3 per capita in urban areas of Ethiopia and the United Republic of Tanzania, and 0.0051 m3 per capita in urban areas of Namibia in 2012.27,28 (see Supporting Information 1).

Two scenarios of cold chain introduction and food system development are considered: one that substitutes North American (NA) parameters into the model, and one that substitutes European (Eur.) parameters. Modeling a transition from the sub-Saharan African food system to one with North American or European properties is the closest to a total (“zero-to-one”) introduction of the cold chain as can be examined with available data. The results of this modeling provide insights into the direct and indirect emissions effects associated with the cold chain as have currently been realized in development.

As seen in the comparison of fruit and vegetable loss rates between sub-Saharan Africa and North America and Oceania in Figure 1, a greater quantity of food needs to be produced in sub-Saharan Africa to supply a similar amount of food to retail, attributable to more-developed food supply chains. Agricultural losses tend to be higher in North America and Oceania due to increased grading from higher quality standards set by retailers.17 These changes in grading standards are an example of how FSC development may influence consumer and retailer preferences, affecting the efficiency and environmental impacts of food supply chains. In sub-Saharan Africa, the larger share of losses occurring after agricultural production are attributed to crop deterioration from climate exposure as well as crop gluts from the seasonality of production.17

Four parameters are integral to modeling the FSC for each system: loss rates (% of food loss at FSC stages), demand (kg food consumed per capita), agricultural emissions factors (kg CO$_2$e/kg food), and cold chain emissions factors (kg CO$_2$e/kg food). The relationship between these parameters and specific calculations conducted are detailed in the Methods section. Du to the fairly sparse and nonstandardized nature of data on food and its environmental impacts, data sources were harmonized to the extent possible. Harmonization choices are detailed in Supporting Information 2.

MATERIALS AND METHODS

The changes in food supplied and the emissions associated with cold chain introduction are determined by adjusting loss rates (R_1, R_2, R_3, R_4), demand (F_5), agricultural emissions factors (E_2), and cold chain emissions factors (E_5). F_{1-4} are determined by the mass balance equations below. Emissions factors characterize food (and food losses) which enter a stage and are subject to its emissions-contributing processes. Emissions are calculated for the preretail portion of the FSC, though demand is defined at the consumer level due to data constraints, and back-calculated using loss rates for the entire FSC. These parameters are drawn from the Monte Carlo distribution types described, with specific parameter described in Supporting Information 3. Parameter distributions are assumed to be independent and 10,000 Monte Carlo simulations are run to produce this study’s results. Sensitivity analysis for these parameters is detailed in Supporting Information 4.

There are five stages of the food supply chain corresponding to Gustavsson et al.17: 1. Agricultural Production, 2. Postharvest Handling and Storage, 3. Processing and Packaging, 4. Distribution/Retail, and 5. Consumption. Where stages 1–3 are considered to be “upstream” and 4–5 are “downstream.” This analysis only examines emissions for the upstream supply chain. Values of variables which correspond to one of these stages are indicated with numerical subscripts (e.g., a subscript of “2” for a Postharvest Handling and Storage value).

Every parameter is defined for each of the seven food types studied: Cereals, Roots and Tubers, Fruits, Vegetables, Meat, Fish and Seafood, and Milk. Therefore, each model parameter has a value associated with the seven food types (x) and three study regions (y). For example, R_{1xSSA} denotes the loss rate of vegetables between Agricultural Production and Postharvest Handling and Storage in SSA.

As depicted in Figure 1, the food present at each section of the supply chain can be represented by

$$F = \{F_{1x,y}, F_{2x,y}, F_{3x,y}, F_{4x,y}, F_{5x,y}\}$$

Where F_x represents mass (kg) of each food type at each stage of the region’s FSC, x denotes the food type, and y denotes the study region. F_5 is defined from a truncated normal distribution (lower bound of zero) defined with “food” values for each region and type from the 2013 FAOSTAT Food Balance Sheets,29 capturing the food available for human consumption in each region within a given year.

Between each stage of the FSC is a loss rate:

$$R = \{R_{1x,y}, R_{2x,y}, R_{3x,y}, R_{4x,y}\}$$

Where R_{nx} represents the percentage of food lost (% of kg) between FSC$_n$ and FSC$_{n+1}$ for each of the seven food types (x) in each region (y). Loss rates calculated by Gustavsson et al.17 are used to define triangular Monte Carlo distributions for this parameter for each food type and region, with specific values provided in Supporting Information 3.

The food loss for each type and region in each stage is defined as $L_{nx,y}$ (kg food) and can be calculated as

$$L_{nx,y} = F_{nx,y} \times R_{nx,y} \quad (1)$$

The mass balance of the system can be represented as

$$F_{5x,y} = [(R_{1x,y} \times (1 - R_{1x,y})) \times (1 - R_{2x,y})] \times (1 - R_{4x,y}) \times (1 - R_{4x,y}) \quad (2)$$

Beginning with values obtained from FAOSTAT and using mass balance, the food available at each upstream FSC stage can be computed by
Direct Trade-Off between Food Savings and Cold Chain Emissions. This analysis first evaluates the direct trade-off of additional cold chain emissions with potential savings in food loss throughout the upstream food supply chain. The direct trade-off calculation does not take into account any indirect behavioral or system-wide changes. As such, it calculates the potential differences in the system before and after cold chain introduction by holding all elements of the baseline SSA model constant, with the exception of the portions of the FSC where the cold chain is introduced and induces changes in the food loss rates \((R_x, R_y)\) and cold chain emissions factors \((E_x)\), as detailed in eqs 4–6. The cold chain codevolves and is integrated with related postharvest storage, processing, transportation, and spoilage-reducing supply chain properties.\(^9,11,24,30\) As a result, some GHG emissions and changes in loss rates attributed to the cold chain are not directly due to refrigeration, but cannot be distinguished or separated from those which are in the data.

Eq 4 computes GHG emissions added through cold chain operation when changed to the North American parameters. A similar equation is used to calculate the European scenario.

\[
E_{\Delta C} = E_{C,x,NA} \left(\frac{F_{4,x,NA} + L_{2,x,NA} + L_{3,x,NA}}{F_{4,x,NA}} \right) - E_{C,x,SSA} \left(\frac{F_{4,x,SSA} + L_{2,x,SSA} + L_{3,x,SSA}}{F_{4,x,SSA}} \right)
\]

(4)

Where \(E_{\Delta C}\) is the change in GHG emissions (kg CO\(_2\)e/kg food) added to the upstream FSC from cold chain operation. Since the baseline models a food system with negligible cold chain infrastructure, \(E_{C,x,SSA}\) is assumed to be zero.

\(L_1\) is not included in eq 4 since it pertains to losses from agriculture and is not exposed to the cold chain. Cold chain emissions (kg CO\(_2\)e/kg food) by food type are drawn from log-normal distributions, with parameters compiled from studies from Porter et al.’s meta-analysis\(^18\) which contained sufficient postfarm gate data on emissions from the cold chain.

Eq 5 calculates the difference in postharvest food loss emissions from cold chain introduction for the North America scenario, with a similar calculation performed for the European scenario.

\[
E_{\Delta L_x} = E_{A,x,SSA} \left(\frac{F_{4,x,SSA} + L_{2,x,SSA} + L_{3,x,SSA}}{F_{4,x,SSA}} \right) - \left(\frac{F_{4,x,NA} + L_{2,x,NA} + L_{3,x,NA}}{F_{4,x,NA}} \right)
\]

(5)

Where \(E_{\Delta L_x}\) is the change in GHG emissions (kg CO\(_2\)e/kg) from changes in food loss emissions associated with cold chain introduction. Because the analysis only includes food loss emissions directly resulting from cold chain introduction, which occurs after agricultural production losses occur, the values associated with \(R_1\) (and subsequent calculation of \(L_1\)) do not change.

The \(E_{\Delta L_x}\) values used in the analysis are weighted averages of agricultural production emissions (kg CO\(_2\)e/kg food) by food type with a cradle-to-farm gate boundary. Values are drawn from log-normal distributions with parameters defined from a meta-analysis of life cycle assessments by Porter et al.\(^18\) These values include any environmental burdens prior to food leaving its place of agricultural production.

The net emissions change comparing cold chain emissions and food loss emissions is shown as eq 6.

\[
E_D = E_{\Delta C} - E_{\Delta L_x}
\]

(6)

Induced System-Wide Changes. Once the direct cold chain trade-off is calculated, this analysis estimates potential system-wide shifts associated with cold chain introduction, including changes to agricultural production and shifts in dietary patterns.

Introduction of the cold chain has the potential to change system logistics and expand agricultural distribution, making the parameters governing the SSA baseline case more similar to agricultural systems in either North America or Europe. To model this, \(R_1, L_1\), and \(E_M\) which were held constant when estimating direct trade-offs, are now assumed to change in addition to the direct trade-offs calculated in eqs 4–6.

Changes in diet are considered as part of the system-wide changes induced from the cold chain. Food supplied to retail is normalized to one kilogram of a representative diet, where each fraction corresponds to the fraction of each food type in the diet examined.

Per-capita demand is calculated for each region as

\[
C_{x,y} = \frac{F_{5,x,y}}{P_y}
\]

(7)

Where \(C_{x,y}\) is the per-capita food consumption of a food type \(x\) in region \(y\)

And \(P_y\) is the population for the region.

The shift toward diets similar to Europe and North America is then calculated as shown in eq 8.

\[
F_{5,x,y} = F_{5,x,SSA} \times \frac{C_{x,y}}{C_{x,SSA}}
\]

(8)

Food supply emissions are calculated in eq 9, both when diet has been held constant and when it has been shifted.

\[
F_p = E_{A,x,SSA} \left(\frac{F_{2,x,SSA} + L_{1,x,SSA}}{\sum_{x=1}^{n} E_{A,x,SSA}} \right) + E_{C,x,SSA} \left(\frac{F_{2,x,SSA} + L_{1,x,SSA}}{\sum_{x=1}^{n} E_{C,x,SSA}} \right)
\]

(9)

RESULTS

Trade-Off Between Added Emissions and Avoided Food Losses in the Cold Chain. A fundamental question for refrigerated supply chain sustainability is whether the increased emissions from cold chain operation will eclipse the avoided emissions from reduced food spoilage. eqs 4–6 are used to calculate this trade-off and the results are depicted in Figures 2 and 3.

In total, the cold chain is found to add more emissions than it saves through avoided food losses. Without taking into account any other changes to the system, introducing refrigeration to sub-Saharan Africa would increase net food-related GHG emissions by 10% from the baseline in the North American scenario and 2% in the European scenario, despite reducing postharvest food loss quantities by 23% in both scenarios. The difference in these emissions increases is due to the recorded North American cold chain emissions being

DOI: 10.1021/acs.est.8b05322

Environmental Science & Technology

larger than those for Europe for five out of seven food types, while avoided food loss emissions are similar for both scenarios.

While total emissions added are larger than loss emissions avoided, the difference between these vary by food type and scenario. Figure 2 shows the cold chain adding more emissions than it avoids on a per kg basis for five of seven food categories if North American values are used, and for three of seven food categories if European values are used. The largest cold chain emissions are associated with fish and seafood, meat, and vegetables in the North American scenario, and with fish and seafood, meat, and cereals in the European scenario. The food types that have the greatest reductions in food loss are fish and seafood, vegetables, and milk in both scenarios. This study finds mixed results for fruit depending on development scenario, though an evaluation of kinnow spoilage in India found GHG reductions of 16% from cold chain presence.31

For both scenarios, emissions associated with food loss actually increase for cereals and meat. For cereals, the increase in food losses result from the addition of a specific “packaging” loss rate in the North American and European processing and packaging stage (R_3), which is not present for sub-Saharan Africa in Gustavsson et al.17 Meat losses increase by 0.3% in North American postharvest handling and storage (R_2), affecting the MCA distributions for North America and Europe (see Supporting Information 3). The cause for an increased postharvest meat loss rate in North America is not discussed by Gustavsson et al.,17 but may be from meat supply practices present in North America but not as common in sub-Saharan Africa (such as the transportation, slaughter, and portioning of meat prior to retail rather than slaughtering animals for meat at market12 or for immediate consumption). Both food loss-related emissions increases are modest in size, but highlight the need to consider cold chain introduction as inseparable from interconnected changes in the food supply chain.9

The distribution of differences between added cold chain emissions and avoided loss emissions by food type and in total dietary emissions are displayed in Figure 3. With the exceptions of meat and fish and seafood, the median difference between these values is close to zero, indicating either negligible changes to food types that are not typically refrigerated or that any increase in cold chain emissions are offset by a similar amount of embodied emissions within food savings. Meat and fish and seafood both show larger emissions increases, and also possess larger variances. This indicates that the amount of food savings is insufficient to offset increases in emissions introduced by the cold chain.

The histograms in Figure 3c and d show the expected change in GHG emissions due to cold chain introduction, using the weighted averages of each food type in the average sub-Saharan diet. A larger share of total emissions differences are greater than zero for the North American scenario than for the European scenario. The North American scenario added more cold chain emissions than loss emissions avoided in 99.9% of runs, and the European scenario resulted in more emissions added than were saved in 89% of runs.

Indirect Effects of Cold Chain Introduction on Upstream Food Supply Emissions. The influence of cold chain introduction on upstream FSC emissions is now examined from a broader, systems perspective, incorporating changes to agricultural production and demand.

Refrigeration enables structural changes in food production systems. For example, cold storage allows for agriculture system industrialization, since farms can supply a greater quantity of perishable crops due to lower spoilage rates.33 The indirect effect of cold chain introduction on agricultural emissions is modeled by changing the parameters for...
agricultural emissions (E_a) and agricultural production loss rates (R_i) from their SSA values to the North American and European values. These changes are made in addition to the postagriculture loss rates and cold chain emission changes reflected in Figures 2 and 3.

Access to refrigeration changes food demand. The cold chain allows for the supply and consumption of perishable food products in a way not possible without robust refrigerated supply chains,9 and has been linked with shifts in diet as nations develop.3,34 The effects of demand changes reflecting a North American or European diet facilitated by the cold chain are examined. The food demand parameter (F_d) is adjusted from its baseline value in addition to the values for agricultural production emissions, loss rates, and cold chain emissions.

Figure 4 shows changes in the emissions required to supply a representative kilogram of food to retail, based on a weighted average of each food type using median MCA values for each parameter. Changes are displayed first with cold chain introduction and changes in agricultural production emissions but with the baseline diet, then with demand changes from dietary shifts.

When examining the indirect effects of the cold chain on agricultural production in addition to its direct effects, emissions decrease in both development scenarios: by 46% for the North American scenario and 49% in the European scenario. Emissions decreases are largest for vegetables, milk, and cereals in the North American scenario, and for milk, vegetables, and meat in the European scenario. These results align with a prior study indicating a decrease in food loss GHGs of 38% is possible from supply chain improvements including cold chain introduction.16

Changes in agricultural production emission factors, which decrease with development, put a downward pressure on emissions. It must be noted that there are trade-offs associated with industrialized agricultural systems which may decrease the emissions per kg of food produced, but may increase other environmental consequences including water pollution, soil

Figure 3. Boxplots and histograms of the difference between added cold chain emissions and avoided loss emissions in the postharvest cold chain for both introduction scenarios. Panel (A) is a boxplot of the emissions difference per kg of each food type food delivered to retail for the North American scenario, with Panel (C) reflecting these emissions for the European scenario. Boxes show the range of values between the 25th and 75th percentiles generated from Monte Carlo Analysis, with the box’s line indicating the median. The gray tails are data points generated which fall outside of this interquartile range. Panel (B) shows the histogram of total net emissions for the North American scenario’s model runs based on a weighted average of food types, with Panel (D) showing these results for the European scenario.
depletion, biodiversity loss, and also geographically concentrate these effects.35

The agricultural production loss rate for roots and tubers increases in both development scenarios due to increased grading standards for produced food (see Supporting Information 3).17 Fruits and vegetables see similar increases in their agricultural production loss rate due to grading, but experience decreases in loss rates in the later upstream stages which result in a net decrease in overall upstream loss rates. Increased grading standards may be considered as a way in which consumer demand influences FSC parameters, with the visual appearance of food being a key determinant of food acceptance and perceived quality by consumers.36,37 However, since fruit and vegetable exposure to refrigeration is typical in their developed supply chains,39 these losses are recouped through decreased postharvest spoilage with supply chain development. Roots and tubers, on the other hand, experience losses due to grading and are not always subject to refrigeration in developed supply chains, and in some large storehouses may be cooled with ventilation from outdoor air.39 Reductions in agricultural loss rates put a downward pressure on emissions for all other food types.

Upstream emissions do not uniformly change when incorporating demand changes. Food supply emissions increase by 10% for the North American scenario but decrease by 15% for the European scenario. The difference between these outcomes is primarily due to the level of meat consumption in the North American diet, where the per-capita meat consumption is 37% greater than in the European scenario, corresponding to a meat emissions increase of 96% over the baseline. The North American scenario also sees emissions increases from fruits and fish and seafood when incorporating demand shifts. The European scenario sees increases in meat and milk emissions with dietary change, but still experiences a total decrease in upstream emissions.

The demand shifts modeled capture both substitutions between food types within a diet, but also increases in total quantities consumed. In this context of sub-Saharan Africa, increases in calorie consumption would improve health outcomes for many individuals,40 an effect not measured in this model. Pradhan et al. characterize diet types by calorie composition, and find low-calorie diets to be decreasing worldwide, with general shifts toward higher-calorie observed with development.41 Increased availability of refrigeration has been connected to increased consumption of perishable food items,3 which may also improve nutritional outcomes.32 Pradhan et al. find low calorie diets observed in the developing world to have similar GHG emissions as higher-calorie diets in the developed world, attributable to differences in food production efficiency.31 The connection between the cold.
chain and economic development related to shifts in food demand, supply, and trade should be examined as the subject of future research, as there are notable aspects of well-being and health that are not taken into account in this study.

The demand shifts modeled illustrate scenarios of dietary convergence. In an analysis of the GHG implications of dietary convergence, Ritchie et al. find modeled diets for the U.S., Australia, Canada, and Germany exceeding average per capita emissions budgets for 1.5 °C of global warming by 2050. That being said, the dietary shifts examined in this study are not preordained, merely reflecting two plausible diets in a developed food system.

Culture and development individual to any given area will be a critical determinant of diet. If diets develop to correspond with South Africa’s nationally recommended diet as modeled by Behrens et al., emissions increase 7% or decrease 4% from the baseline, depending on whether North American or European values are used for the other model parameters. This finding illustrates how emissions decreases (or more-modest increases) could accompany health improvements if diets develop in line with a regionally nationally recommended diet. Additional details regarding this diet are in Supporting Information 5.

These results indicate the importance of incorporating a technology’s influence on consumer preferences into an assessment of its environmental outcomes. Despite decreased agriculture emissions associated with the cold chain, refrigeration may prompt shifts toward more emissions-intensive foods, creating a scenario of increased environmental impacts.

DISCUSSION

In contextualizing the results of this analysis, it should be noted that this study focuses only on GHG emissions, and does not take into account societal benefits of the cold chain, which include food security, health outcomes, nutrition, and economic development. The purpose of the study is to highlight the GHG trade-offs of the technology in order to identify potential areas for improvement as the cold chain continues to expand globally.

We find that the emissions from cold chain operation will likely exceed the emissions saved from reductions in food losses, if the cold chain is implemented in a way which resembles its presence in North America or Europe. While the results for individual food types vary, these net emissions increases are larger and more statistically certain to occur in the North American development scenario than the European scenario. This difference is due to the magnitude of cold chain emissions recorded for each region.

This study presents findings relevant to a number of stakeholders. Manufacturers of refrigeration equipment can mitigate emissions increases by employing efficiency improvements, the substitution of refrigerants with low Global Warming Potentials, and/or working with firms along the FSC to increase efficiency. The Postharvest Education Foundation has produced a valuable white paper on considerations for the use of the cold chain in developing areas. Potential emissions increases from shifts to high-GHG diets could be mitigated through reducing food losses and the consumption of particularly emissions-intensive foods such as beef. Shifting diets is a complex topic, which intersects with elements of culture, equity, and nutrition. Garnett provides a discussion of the best opportunities for mitigating food system GHGs, highlighting key opportunities and challenges.

The Kigali Amendment to the Montreal Protocol will have African nations freeze the use of hydrofluorocarbon (HFC) refrigerants for most countries by 2024. These refrigerants carry high global warming potential values, with HFC leakage from stationary refrigeration estimated to release 1740,000 tonnes of CO2 in 2005. This amendment presents the opportunity to reduce direct environmental impacts from refrigeration. The Montreal Protocol has been a remarkably successful example of international environmental governance, with past adherence by signatories and industry cooperation indicating future successes for the Kigali Amendment. Refrigerators and cold chain technology will also likely experience increases in efficiency over time, which could decrease direct emissions. Dahmus notes that energy efficiency improvements in U.S. residential refrigerators since the 1960s has been enough to mitigate resource consumption increases driven by increased refrigerator ownership and size. These improvements are attributed to efficiency mandates, further highlighting the role of governance and regulation in mitigating potential emissions increases from technology.

As noted by Porter et al., multiple entries in the literature find that production/prefarm gate emissions comprise the majority (ranging from 50–90%) of emissions associated with a food product. However, postfarm processes including refrigeration make both direct and indirect emissions contributions. When incorporating indirect emissions impacts (such as dietary shifts), the total emissions from postfarm processes are larger than just their direct emissions. The cold chain is an integral element of an industrialized food system, with introduction enabling highly integrated systems connecting agricultural producers and the postharvest food supply chain. These feedbacks necessitate a systems view of the FSC in order to capture the full influence and environmental impacts associated with the cold chain.

When incorporating the cold chain’s indirect effects, decreases in agricultural production emissions and upstream food losses decrease total upstream emissions in supplying food to retail. However, incorporating shifts in diet leads to an increase in total emissions in the North American scenario and a decrease in the European scenario. This difference is attributable to higher meat consumption in the North American diet. The outsized role of meat-intense diets in comprising food system emissions has been quantified for the United States’ diet. It is possible that dietary shifts enabled by increased access to perishable foods could eclipse GHG additions from the cold chain, but this depends largely on consumer choices. Promoting reduced-meat diets requires engaging with sociocultural norms as well as psychological perceptions, and may require different strategies to be effective for different groups of people.

The influence of behavioral choices and diet on food system emissions has been noted in the literature. While anticipated shifts in diets are modeled and addressed in the sustainability literature, they are infrequently integrated with more-technically oriented models of the FSC. Similarly, differences in food production systems are often not accounted for in studies of sustainable diets. Without including behavioral and production system differences in modeling the FSC, important influences on environmental outcomes may not be captured.
Data on food losses and waste are limited and uncertain,3,4,5 presenting distinct challenges in creating informed models. There is similarly limited data on the cold chain, particularly in the developing world.60 These data quality issues affect this study, which draws on limited and uncertain data for all major model parameters. While there have been means proposed to better-optimize data collection from food life cycle assessments (studying the environmental impacts of a product throughout its lifespan),36 different reporting formats, functional units, and system boundaries pose challenges in data collection and standardization. Improving the quantity and quality of estimates for food loss and waste rates, and the environmental impacts from food production and supply are critical research needs.

Sub-Saharan Africa is not a uniform region, and contains notable heterogeneity and differences within it. The aggregation of this region as a baseline case is a limitation of this study which can be improved upon by future work. In addition to differences in cold chain penetration, diet, and agricultural production, sub-Saharan Africa differs from North America and Europe in local ambient temperature. This will affect elements of the food system ranging from agricultural production57 to the efficiency and emissions of cold chain operation.25

Development does not occur smoothly, and is often asymmetric in ways which are difficult to capture in a model. Assumptions including the matching of food demand with supply and reliable provision of energy from the electricity grid may differ from an observed development process. This analysis assumes no improvements in cold chain technology upon introduction; however, James and James suggest that the cold chain can be extended without an increase in global CO\textsubscript{2}, or possibly even with a decrease, if the most energy efficient refrigeration technologies are used.58 The deployment of renewable and alternative energy technologies such decentralized solar power in areas of Africa59,60 could also provide important emissions reductions within the food system studied, and have been identified as a key means of reducing postfarm food system emissions.60

Refrigerated supply chains transform food systems. Examining the introduction of the cold chain requires modeling more than the technology itself: incorporating the behavioral and broader systemic changes which accompany it. This systems view allows for greater insights into environmental trade-offs and changes in food system sustainability.

\section*{ASSOCIATED CONTENT}

\subsection*{Supporting Information}
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.8b05322.

Five further-detailed descriptions of methods, nine tables of model parameters, one figure displaying results of sensitivity analysis, and one figure displaying detailed results from modeling the nationally recommended diet scenario (PDF)

\section*{AUTHOR INFORMATION}

\subsection*{Corresponding Author}
*E-mail: brheard@umich.edu.

\textbf{ORCID} \dagger

Brent R. Heard: 0000-0001-9761-2043
Shelie A. Miller: 0000-0003-0379-3993

\section*{Notes}
The authors declare no competing financial interest.

\section*{ACKNOWLEDGMENTS}

We thank Martin C. Heller for his advice and suggestions on data harmonization for the cold chain emissions factors.

\section*{REFERENCES}

(4) Kitinoja, L. Use of Cold Chains for Reducing Food Losses in Developing Countries; 13–03; 2013.

(14) Food Loss and Waste Accounting and Reporting Standard; World Resources Institute, 2016.

show_s_how_the_cold_chain_can_help_reduce_food_loss_and_carbon_emissions.aspx.

(29) Food and Agriculture Organization of the United Nations. FAOSTAT.

(49) Emissions and Projections of HFCs, PFCs and SF6 for the UK and Constituent Countries; AEA Technology Environment, 2004.

