back to all publications

Optimal Locations of Electric Public Charging Stations Using Real World Vehicle Travel Patterns

CSS Publication Number
Full Publication Date
December, 2015

We propose an optimization model based on vehicle travel patterns to capture public charging demand and select the locations of public charging stations to maximize the amount of vehicle-miles-traveled (VMT) being electrified. The formulated model is applied to Beijing, China as a case study using vehicle trajectory data of 11,880 taxis over a period of three weeks. The mathematical problem is formulated in GAMS modeling environment and Cplex optimizer is used to find the optimal solutions. Formulating mathematical model properly, input data transformation, and Cplex option adjustment are considered for accommodating large-scale data. We show that, compared to the 40 existing public charging stations, the 40 optimal ones selected by the model can increase electrified fleet VMT by 59% and 88% for slow and fast charging, respectively. Charging demand for the taxi fleet concentrates in the inner city. When the total number of charging stations increase, the locations of the optimal stations expand outward from the inner city. While more charging stations increase the electrified fleet VMT, the marginal gain diminishes quickly regardless of charging speed.

Metin Turkay
Research Areas
Mobility Systems

Charging infrastructure planning, Electric vehicles, Optimization, Vehicle trajectory

Publication Type
Journal Article
Digital Object Identifier
Full Citation

Shahraki, Narges, Hua Cai, Metin Turkay and Ming Xu. (2015) Optimal locations of electric public charging stations using real world vehicle travel patterns. Transportation Research Part D: Transport and Environment. 41: 165-176.