Optimizing Solar-Plus-Storage Deployment on Public Buildings for Climate, Health, Resilience, and Energy Bill Benefits
Climate change, public health, and resilience to power outages are of critical concern to local governments and are increasingly motivating investments in on-site solar and storage. However, designing a solar-plus-storage system to co-optimize for climate, health, resilience, and energy bill benefits requires complex trade-offs that are not captured in current analyses. To fill this gap, we integrate the climate and health impacts of grid-purchased electricity into the REopt Lite optimization model using forward-looking marginal emissions costs. Using this new model, we quantify the impact of including energy bill, climate, health, and/or power outage cost savings on the optimal sizing, battery dispatch, and economic returns of solar-plus-storage on three public building types (a hospital, school, and warehouse) across 14 U.S. cities. We find that monetizing and co-optimizing for climate and health benefits, as compared to only energy bill savings and resilience, increases the net present value of the solar-plus-storage systems by $200k to $5.2M and makes larger systems financially attractive. Our results illustrate significant differences across geographies and building types, highlighting the need for site-specific analyses and associated policies regarding the costs and benefits of solar-plus-storage.