back to all projects

A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions

A comprehensive compilation of published studies reporting directly measured experimental determinations of Henry's law constant (HLC) temperature dependence relationships for organic compounds in dilute, non-saline aqueous solutions under ambient conditions was conducted. From this effort, 55 such studies (covering 204 organic compounds) were identified, critically reviewed, summarized and discussed. Of the 204 compounds, 57 were studied in more than one investigation. For the 57 'multi-studied' compounds, relatively good agreement (averaging within 20-30%) was found between the results from different investigations. Given such results, a 'consensus' relationship (i.e., an average temperature dependence relation) was generated for each of the multi-studied compounds. Overall, considering relations established for 197 of the 204 compounds investigated (the results for the other 7 compounds being excluded due to poor correlation coefficients), the average slope of the temperature dependence line was found to correspond to an increase in HLC values by a factor of 1.88 (i.e., an 88% increase) per 10 degrees C rise in temperature (thermodynamically equivalent to an average enthalpy of volatilization of 47 kJ/mole). The associated range found for the temperature dependence slope corresponds to an increase in HLC values by a factor ranging from 1.12 to 3.55(i.e., a 12-255% increase) per 10 degrees C rise (equivalent enthalpy of volatilization range: 8-93 kJ/mole). The wide range of slope values found indicates that serious errors may result if one applies the commonly cited 'rule of thumb' that HLC values double per 10 degrees C rise in temperature to a specific compound. In light of this finding, when facedwith a lack of data, a prudent course for practitioners to take appears to be conducting a laboratory study to determine the exact temperature dependence for the compound(s) of interest.

Research Areas
Framework, Methods & Tools
Materials
Urban Systems and Built Environment